Suchergebnisse - stacked sparse autoencoder((sae OR sage))~

  1. 1

    Denoising magnetic resonance spectroscopy (MRS) data using stacked autoencoder for improving signal‐to‐noise ratio and speed of MRS von Wang, Jing, Ji, Bing, Lei, Yang, Liu, Tian, Mao, Hui, Yang, Xiaofeng

    ISSN: 0094-2405, 2473-4209, 2473-4209
    Veröffentlicht: United States 01.12.2023
    Veröffentlicht in Medical physics (Lancaster) (01.12.2023)
    “… Background While magnetic resonance imaging (MRI) provides high resolution anatomical images with sharp soft tissue contrast, magnetic resonance spectroscopy …”
    Volltext
    Journal Article
  2. 2

    A Stacked Autoencoder With Sparse Bayesian Regression for End-Point Prediction Problems in Steelmaking Process von Liu, Chang, Tang, Lixin, Liu, Jiyin

    ISSN: 1545-5955, 1558-3783
    Veröffentlicht: New York IEEE 01.04.2020
    “… Considering the importance of data representation in modeling, the original data are inputted to a stacked autoencoder (SAE …”
    Volltext
    Journal Article
  3. 3

    Building feature space of extreme learning machine with sparse denoising stacked-autoencoder von Cao, Le-le, Huang, Wen-bing, Sun, Fu-chun

    ISSN: 0925-2312, 1872-8286
    Veröffentlicht: Elsevier B.V 22.01.2016
    Veröffentlicht in Neurocomputing (Amsterdam) (22.01.2016)
    “… Deep learning algorithms such as stacked autoencoder (SAE) and deep belief network (DBN) are built on learning several levels of representation of the input …”
    Volltext
    Journal Article
  4. 4
  5. 5

    A Novel Double-Stacked Autoencoder for Power Transformers DGA Signals With An Imbalanced Data Structure von Yang, Dongsheng, Qin, Jia, Pang, Yongheng, Huang, Tingwen

    ISSN: 0278-0046, 1557-9948
    Veröffentlicht: New York IEEE 01.02.2022
    Veröffentlicht in IEEE transactions on industrial electronics (1982) (01.02.2022)
    “… To fill this research gap, in this article, a novel double-stacked autoencoder (DSAE) is proposed for a fast and accurate judgment of power transformer health conditions with an imbalanced data structure …”
    Volltext
    Journal Article
  6. 6

    A sparse stacked denoising autoencoder with optimized transfer learning applied to the fault diagnosis of rolling bearings von Sun, Meidi, Wang, Hui, Liu, Ping, Huang, Shoudao, Fan, Peng

    ISSN: 0263-2241, 1873-412X
    Veröffentlicht: London Elsevier Ltd 01.11.2019
    “… As an unsupervised deep learning algorithm, a stacked autoencoder (SAE) can relieve the pressure of labelling data …”
    Volltext
    Journal Article
  7. 7

    Ischemic stroke lesion segmentation using stacked sparse autoencoder von Praveen, G.B., Agrawal, Anita, Sundaram, Ponraj, Sardesai, Sanjay

    ISSN: 0010-4825, 1879-0534, 1879-0534
    Veröffentlicht: United States Elsevier Ltd 01.08.2018
    Veröffentlicht in Computers in biology and medicine (01.08.2018)
    “… In this work, we propose an unsupervised featured learning approach based on stacked sparse autoencoder (SSAE …”
    Volltext
    Journal Article
  8. 8

    Stacked Sparse Autoencoder-Based Deep Network for Fault Diagnosis of Rotating Machinery von Qi, Yumei, Shen, Changqing, Wang, Dong, Shi, Juanjuan, Jiang, Xingxing, Zhu, Zhongkui

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: Piscataway IEEE 01.01.2017
    Veröffentlicht in IEEE access (01.01.2017)
    “… Thus, a stacked sparse autoencoder (SAE)-based machine fault diagnosis method is proposed in this paper …”
    Volltext
    Journal Article
  9. 9

    Toward Robust Fault Identification of Complex Industrial Processes Using Stacked Sparse-Denoising Autoencoder With Softmax Classifier von Liu, Jinping, Xu, Longcheng, Xie, Yongfang, Ma, Tianyu, Wang, Jie, Tang, Zhaohui, Gui, Weihua, Yin, Huazhan, Jahanshahi, Hadi

    ISSN: 2168-2267, 2168-2275, 2168-2275
    Veröffentlicht: United States IEEE 01.01.2023
    Veröffentlicht in IEEE transactions on cybernetics (01.01.2023)
    “… This article proposes a robust end-to-end deep learning-induced fault recognition scheme by stacking multiple sparse-denoising autoencoders with a Softmax classifier, called stacked spare-denoising autoencoder (SSDAE …”
    Volltext
    Journal Article
  10. 10

    SSAE‐KPLS: A quality‐related process monitoring via integrating stacked sparse autoencoder with kernel partial least squares von Ye, Zhenyu, Wu, Ping, He, Yuchen, Pan, Haipeng

    ISSN: 0008-4034, 1939-019X
    Veröffentlicht: Hoboken, USA John Wiley & Sons, Inc 01.10.2023
    Veröffentlicht in Canadian journal of chemical engineering (01.10.2023)
    “… ‐related process monitoring method via integrating stacked sparse autoencoder (SSAE) with KPLS (SSAE‐KPLS). First, an SSAE model is employed to exploit the nonlinearity within process variables …”
    Volltext
    Journal Article
  11. 11

    Novel semi-supervised sparse stacked autoencoder integrated with local linear embedding for industrial soft sensing von He, Yan-Lin, Jiang, Yu, Gao, Hui-Hui, Xu, Yuan, Zhu, Qun-Xiong

    ISSN: 0019-0578, 1879-2022, 1879-2022
    Veröffentlicht: United States Elsevier Ltd 04.06.2025
    Veröffentlicht in ISA transactions (04.06.2025)
    “… , posing significant challenges for soft sensing. To address these issues, this paper proposes novel Semi-Supervised Sparse Stacked Autoencoder integrated with the Local Linear Embedding algorithm (SS-SAE-LLE …”
    Volltext
    Journal Article
  12. 12

    Sparse stacked autoencoder network for complex system monitoring with industrial applications von Deng, Ziwei, Li, Yuxuan, Zhu, Hongqiu, Huang, Keke, Tang, Zhaohui, Wang, Zhen

    ISSN: 0960-0779, 1873-2887
    Veröffentlicht: Elsevier Ltd 01.08.2020
    Veröffentlicht in Chaos, solitons and fractals (01.08.2020)
    “… •A fault classification and isolation method based on SAE is proposed for complex system …”
    Volltext
    Journal Article
  13. 13

    Embedded stacked group sparse autoencoder ensemble with L1 regularization and manifold reduction von Li, Yongming, Lei, Yan, Wang, Pin, Jiang, Mingfeng, Liu, Yuchuan

    ISSN: 1568-4946, 1872-9681
    Veröffentlicht: Elsevier B.V 01.03.2021
    Veröffentlicht in Applied soft computing (01.03.2021)
    “… Stacked autoencoders (SAEs) are easy to understand and realize, and they are powerful tools that learn deep features from original features, so they are popular for classification problems …”
    Volltext
    Journal Article
  14. 14

    Performance Evaluation of Support Vector Machine and Stacked Autoencoder for Hyperspectral Image Analysis von Jabir, Brahim, Nadif, Bendaoud, Diez, Isabel De la Torre, Garay, Helena, Noya, Irene Delgado

    ISSN: 1939-1404, 2151-1535
    Veröffentlicht: Piscataway IEEE 2025
    “… : the support vector machine (SVM) and the more recent deep learning-based stacked autoencoder (SAE …”
    Volltext
    Journal Article
  15. 15

    Transfer learning based on improved stacked autoencoder for bearing fault diagnosis von Luo, Shuyang, Huang, Xufeng, Wang, Yanzhi, Luo, Rongmin, Zhou, Qi

    ISSN: 0950-7051, 1872-7409
    Veröffentlicht: Elsevier B.V 28.11.2022
    Veröffentlicht in Knowledge-based systems (28.11.2022)
    “… Stacked autoencoder (SAE) has been widely employed in deep transfer learning research since it is a semi-supervised algorithm …”
    Volltext
    Journal Article
  16. 16

    Spectral-spatial stacked autoencoders based on low-rank and sparse matrix decomposition for hyperspectral anomaly detection von Zhao, Chunhui, Zhang, Lili

    ISSN: 1350-4495, 1879-0275
    Veröffentlicht: Elsevier B.V 01.08.2018
    Veröffentlicht in Infrared physics & technology (01.08.2018)
    “… Second, stacked autoencoders (SAE) are employed on the sparse matrix for spectral deep features and on the low-rank matrix for spatial deep features, respectively …”
    Volltext
    Journal Article
  17. 17

    Six Phase Transmission Line Protection Using Bat Algorithm Tuned Stacked Sparse Autoencoder von Rao Althi, Tirupathi, Koley, Ebha, Ghosh, Subhojit, Shukla, Sunil Kumar

    ISSN: 1532-5008, 1532-5016
    Veröffentlicht: Philadelphia Taylor & Francis 20.01.2023
    Veröffentlicht in Electric power components and systems (20.01.2023)
    “… Six-phase transmission lines have the capability to address the continually evolving power demand. It allows upgrading the power transfer capability of the …”
    Volltext
    Journal Article
  18. 18

    Industrial Internet of Things Cyber Threats Detection Through Deep Feature Learning and Stacked Sparse Autoencoder Based Classification von Vijay Anand, R., Magesh, G., Alagiri, I., Brahmam, Madala Guru, Senthil Kumar, C., Kesavan, M., Abdullah, Azween Bin

    ISSN: 2161-3915, 2161-3915
    Veröffentlicht: Chichester, UK John Wiley & Sons, Ltd 01.09.2025
    “… ABSTRACT In recent times, the industrial system has integrated with industrial Internet of Things (IoT) applications to enable the ease of production process …”
    Volltext
    Journal Article
  19. 19

    Classification of Power Quality Disturbances via Deep Learning von Ma, Jian, Zhang, Jun, Xiao, Luxin, Chen, Kexu, Wu, Jianhua

    ISSN: 0256-4602, 0974-5971
    Veröffentlicht: Taylor & Francis 04.07.2017
    Veröffentlicht in Technical review - IETE (04.07.2017)
    “… ). Stacked autoencoder, as a deep learning framework, is employed to extract high-level features of PQDs for classification …”
    Volltext
    Journal Article
  20. 20

    K-Means Clustering Optimizing Deep Stacked Sparse Autoencoder von Bi, Yandong, Wang, Peng, Guo, Xuchao, Wang, Zhijun, Cheng, Shuhan

    ISSN: 1557-2064, 1557-2072
    Veröffentlicht: New York Springer US 01.12.2019
    Veröffentlicht in Sensing and imaging (01.12.2019)
    “… How to speed up training is a problem deserving of study. In order to accelerate training, K-means clustering optimizing deep stacked sparse autoencoder (K-means sparse SAE …”
    Volltext
    Journal Article