Suchergebnisse - stacked denoising autoencoder neural network

  1. 1

    Video surveillance image enhancement via a convolutional neural network and stacked denoising autoencoder von Che Aminudin, Muhamad Faris, Suandi, Shahrel Azmin

    ISSN: 0941-0643, 1433-3058
    Veröffentlicht: London Springer London 01.02.2022
    Veröffentlicht in Neural computing & applications (01.02.2022)
    “… To address these issues, a deep learning image enhancement (DLIE) model is proposed. By utilizing a deep learning architecture such as a convolutional neural network (CNN …”
    Volltext
    Journal Article
  2. 2

    Intelligent fault diagnosis method of rolling bearing based on stacked denoising autoencoder and convolutional neural network von Che, Changchang, Wang, Huawei, Ni, Xiaomei, Fu, Qiang

    ISSN: 0036-8792, 1758-5775
    Veröffentlicht: Bradford Emerald Publishing Limited 17.09.2020
    Veröffentlicht in Industrial lubrication and tribology (17.09.2020)
    “… To solve those problems, an intelligent fault diagnosis model based on stacked denoising autoencoder (SDAE …”
    Volltext
    Journal Article
  3. 3

    Stepwise Inertial Intelligent Control of Wind Power for Frequency Regulation Based on Stacked Denoising Autoencoder and Deep Neural Network von WANG Yalun, ZHOU Tao, CHEN Zhong, WANG Yi, QUAN Hao

    ISSN: 1006-2467
    Veröffentlicht: Editorial Office of Journal of Shanghai Jiao Tong University 01.11.2023
    Veröffentlicht in Shànghăi jiāotōng dàxué xuébào (01.11.2023)
    “… Stepwise inertial control (SIC) provides a step-increase of power after load fluctuation, which can effectively prevent system frequency decline and ensure the …”
    Volltext
    Journal Article
  4. 4

    Intelligent Fault Diagnosis Method for Blade Damage of Quad-Rotor UAV Based on Stacked Pruning Sparse Denoising Autoencoder and Convolutional Neural Network von Yang, Pu, Wen, Chenwan, Geng, Huilin, Liu, Peng

    ISSN: 2075-1702, 2075-1702
    Veröffentlicht: Basel MDPI AG 01.12.2021
    Veröffentlicht in Machines (Basel) (01.12.2021)
    “… This paper introduces a new intelligent fault diagnosis method based on stack pruning sparse denoising autoencoder and convolutional neural network (sPSDAE-CNN …”
    Volltext
    Journal Article
  5. 5

    Traffic Image Analysis Based on Stacked Denoising Autoencoder Neural Network von Kim, Daehyon

    ISSN: 2716-0858, 2715-9248
    Veröffentlicht: Pusat Penelitian dan Pengabdian Masyarakat (P3M), Politeknik Negeri Cilacap 29.12.2023
    “… This study aims to explore major neural network models - Stacked Denoising Autoencoder (SDAE …”
    Volltext
    Journal Article
  6. 6

    Application of deep neural network with stacked denoising autoencoder for ECG signal classification von Gunawan, Gunawan, Aimar Akbar, Aminnur, Andriani, Wresti

    ISSN: 2721-5792, 2721-5792
    Veröffentlicht: 30.06.2024
    “… Applying deep neural networks with stacked denoising autoencoders (SDAEs) for ECG signal classification presents a promising approach for improving the accuracy of arrhythmia diagnosis …”
    Volltext
    Journal Article
  7. 7

    Cost-sensitive ensemble of stacked denoising autoencoders for class imbalance problems in business domain von Wong, Man Leung, Seng, Kruy, Wong, Pak Kan

    ISSN: 0957-4174, 1873-6793
    Veröffentlicht: New York Elsevier Ltd 01.03.2020
    Veröffentlicht in Expert systems with applications (01.03.2020)
    “… •Novel methods that uses deep neural networks, cost-sensitive and ensemble learning …”
    Volltext
    Journal Article
  8. 8

    PRPI-SC: an ensemble deep learning model for predicting plant lncRNA-protein interactions von Zhou, Haoran, Wekesa, Jael Sanyanda, Luan, Yushi, Meng, Jun

    ISSN: 1471-2105, 1471-2105
    Veröffentlicht: London BioMed Central 24.08.2021
    Veröffentlicht in BMC bioinformatics (24.08.2021)
    “… Results In this study, we propose an ensemble deep learning model to predict plant lncRNA-protein interactions using stacked denoising autoencoder and convolutional neural network based on sequence …”
    Volltext
    Journal Article
  9. 9

    SDARE: A stacked denoising autoencoder method for game dynamics network structure reconstruction von Huang, Keke, Li, Shuo, Dai, Penglin, Wang, Zhen, Yu, Zhaofei

    ISSN: 0893-6080, 1879-2782, 1879-2782
    Veröffentlicht: United States Elsevier Ltd 01.06.2020
    Veröffentlicht in Neural networks (01.06.2020)
    “… Complex network is a general model to represent the interactions within technological, social, information, and biological interaction …”
    Volltext
    Journal Article
  10. 10

    LIDER: cell embedding based deep neural network classifier for supervised cell type identification von Tang, Yachen, Li, Xuefeng, Shi, Mingguang

    ISSN: 2167-8359, 2167-8359
    Veröffentlicht: San Diego, USA PeerJ. Ltd 16.08.2023
    Veröffentlicht in PeerJ (San Francisco, CA) (16.08.2023)
    “… Based on a stacked denoising autoencoder with a tailored and reconstructed loss function, LIDER identifies cell embedding and predicts cell types with a deep neural network classifier …”
    Volltext
    Journal Article
  11. 11

    Denoising stacked autoencoders for transient electromagnetic signal denoising von Lin, Fanqiang, Chen, Kecheng, Wang, Xuben, Cao, Hui, Chen, Danlei, Chen, Fanzeng

    ISSN: 1607-7946, 1023-5809, 1607-7946
    Veröffentlicht: Gottingen Copernicus GmbH 01.03.2019
    Veröffentlicht in Nonlinear processes in geophysics (01.03.2019)
    “… of the characteristics of the SFS to denoise the SFS. We introduce the SFSDSA (secondary field signal denoising stacked autoencoders …”
    Volltext
    Journal Article
  12. 12

    Gated relational stacked denoising autoencoder with localized author embedding for global citation recommendation von Dai, Tao, Yan, Wenjun, Zhang, Kaiqi, Qiu, Chen, Zhao, Xiangmo, Pan, Shirui

    ISSN: 0957-4174, 1873-6793
    Veröffentlicht: New York Elsevier Ltd 01.12.2021
    Veröffentlicht in Expert systems with applications (01.12.2021)
    “… This paper presents a novel neural network based model, called gated relational probabilistic stacked denoising autoencoder with localized author (GRSLA …”
    Volltext
    Journal Article
  13. 13

    Rolling Bearing Fault Diagnosis Method Based on Stacked Denoising Autoencoder and Convolutional Neural Network von Wang, Yumin, Han, Minghong, Liu, Wei

    Veröffentlicht: IEEE 01.08.2019
    “… A fault diagnosis method towards non-stationary signal is proposed in this paper. A fault diagnosis model of combining stacked denoising autoencoder (SDAE …”
    Volltext
    Tagungsbericht
  14. 14

    Low-level structure feature extraction for image processing via stacked sparse denoising autoencoder von Fan, Zunlin, Bi, Duyan, He, Linyuan, Shiping, Ma, Gao, Shan, Li, Cheng

    ISSN: 0925-2312, 1872-8286
    Veröffentlicht: Elsevier B.V 21.06.2017
    Veröffentlicht in Neurocomputing (Amsterdam) (21.06.2017)
    “… In this paper, we propose a novel low-level structure feature extraction for image processing based on deep neural network, stacked sparse denoising autoencoder (SSDA …”
    Volltext
    Journal Article
  15. 15

    Intelligent fault diagnosis approach with unsupervised feature learning by stacked denoising autoencoder von Xia, Min, Li, Teng, Liu, Lizhi, Xu, Lin, de Silva, Clarence W

    ISSN: 1751-8822, 1751-8830
    Veröffentlicht: The Institution of Engineering and Technology 01.09.2017
    Veröffentlicht in IET science, measurement & technology (01.09.2017)
    “… ) based on stacked denoising autoencoder. Representative features are learned by applying the denoising autoencoder to the unlabelled data in an unsupervised manner …”
    Volltext
    Journal Article
  16. 16

    Segmentation‐enhanced gamma spectrum denoising based on deep learning von Lu, Xiangqun, Zheng, Hongzhi, Liu, Yaqiong, Li, Hongxing, Zhou, Qingyun, Li, Tao, Yang, Hongguang

    ISSN: 1751-8628, 1751-8636
    Veröffentlicht: Stevenage John Wiley & Sons, Inc 01.01.2024
    Veröffentlicht in IET communications (01.01.2024)
    “… This paper proposes a segmentation‐enhanced Convolutional Neural NetworkStacked Denoising Autoencoder (CNN‐SDAE …”
    Volltext
    Journal Article
  17. 17

    Convergence Technology Opportunity Discovery for Firms Based on Technology Portfolio Using the Stacked Denoising AutoEncoder (SDAE) von Kwon, Deuksin, Sohn, So Young

    ISSN: 0018-9391, 1558-0040
    Veröffentlicht: New York IEEE 01.01.2024
    Veröffentlicht in IEEE transactions on engineering management (01.01.2024)
    “… The present research, by employing a stacked denoising autoencoder, a deep neural network-based collaborative filtering method, provides reliable latent preference toward convergence technology for individual firms …”
    Volltext
    Journal Article
  18. 18

    A deep learning ensemble approach for crude oil price forecasting von Zhao, Yang, Li, Jianping, Yu, Lean

    ISSN: 0140-9883, 1873-6181
    Veröffentlicht: Kidlington Elsevier B.V 01.08.2017
    Veröffentlicht in Energy economics (01.08.2017)
    “… One is an advanced deep neural network model named stacked denoising autoencoders (SDAE) which is used to model the nonlinear and complex relationships of oil price with its factors …”
    Volltext
    Journal Article
  19. 19

    A novel denoising autoencoder hybrid network for remaining useful life estimation of lithium‐ion batteries von Xia, Wei, Xu, Jinli, Liu, Baolei, Duan, Huiyun

    ISSN: 2050-0505, 2050-0505
    Veröffentlicht: London John Wiley & Sons, Inc 01.08.2024
    Veröffentlicht in Energy science & engineering (01.08.2024)
    “… ). This architecture integrates a stacked convolutional neural network with subsequent layers of bidirectional gated recurrent units within an encoder–decoder framework …”
    Volltext
    Journal Article
  20. 20

    Recognition of cognitive load with a stacking network ensemble of denoising autoencoders and abstracted neurophysiological features von Cao, Zixuan, Yin, Zhong, Zhang, Jianhua

    ISSN: 1871-4080, 1871-4099
    Veröffentlicht: Dordrecht Springer Netherlands 01.06.2021
    Veröffentlicht in Cognitive neurodynamics (01.06.2021)
    “… In this study, we developed a novel neural network ensemble, SE-SDAE, based on stacked denoising autoencoders (SDAEs …”
    Volltext
    Journal Article