Výsledky vyhľadávania - stacked denoising autoencoder(sae)~

  1. 1

    Roller bearing fault diagnosis using stacked denoising autoencoder in deep learning and Gath–Geva clustering algorithm without principal component analysis and data label Autor Xu, Fan, Tse, Wai tai Peter, Tse, Yiu Lun

    ISSN: 1568-4946, 1872-9681
    Vydavateľské údaje: Elsevier B.V 01.12.2018
    Vydané v Applied soft computing (01.12.2018)
    “…Most deep learning models such as stacked autoencoder (SAE) and stacked denoising autoencoder (SDAE…”
    Získať plný text
    Journal Article
  2. 2

    Constructing a health indicator for bearing degradation assessment via an unsupervised and enhanced stacked autoencoder Autor Xu, Fan, Wang, Lei

    ISSN: 1474-0346, 1873-5320
    Vydavateľské údaje: Elsevier Ltd 01.08.2022
    Vydané v Advanced engineering informatics (01.08.2022)
    “… To demonstrate our proposed method is better than other models, including the stacked autoencoder (SAE…”
    Získať plný text
    Journal Article
  3. 3

    Object-Based Land-Cover Supervised Classification for Very-High-Resolution UAV Images Using Stacked Denoising Autoencoders Autor Zhang, Xiaodong, Chen, Guanzhou, Wang, Wenbo, Wang, Qing, Dai, Fan

    ISSN: 1939-1404, 2151-1535
    Vydavateľské údaje: Piscataway IEEE 01.07.2017
    “… Second, we extract the spectral, spatial, and texture features for each object. Then we put all features into stacked autoencoders (SAE…”
    Získať plný text
    Journal Article
  4. 4

    Building feature space of extreme learning machine with sparse denoising stacked-autoencoder Autor Cao, Le-le, Huang, Wen-bing, Sun, Fu-chun

    ISSN: 0925-2312, 1872-8286
    Vydavateľské údaje: Elsevier B.V 22.01.2016
    Vydané v Neurocomputing (Amsterdam) (22.01.2016)
    “… Deep learning algorithms such as stacked autoencoder (SAE) and deep belief network (DBN) are built on learning several levels of representation of the input…”
    Získať plný text
    Journal Article
  5. 5

    HCC Recognition Within Ultrasound Images Employing Advanced Textural Features with Deep Learning Techniques Autor Mitrea, Delia, Nedevschi, Sergiu, Mitrea, Paulina, Lupsor, Monica Platon, Badea, Radu

    Vydavateľské údaje: IEEE 01.10.2019
    “… Regarding the deep learning methods, we focus on Stacked Denoising Autoencoders (SAE), so we study its impact upon the performance of HCC computerized diagnosis…”
    Získať plný text
    Konferenčný príspevok..
  6. 6

    Deep learning algorithms for brain disease detection with magnetic induction tomography Autor Chen, Ruijuan, Huang, Juan, Song, Yixiang, Li, Bingnan, Wang, Jinhai, Wang, Huiquan

    ISSN: 0094-2405, 2473-4209, 2473-4209
    Vydavateľské údaje: United States 01.02.2021
    Vydané v Medical physics (Lancaster) (01.02.2021)
    “…), stacked autoencoder (SAE), and denoising autoencoder (DAE), are used to solve the nonlinear reconstruction problem of MIT, and the reconstruction results of DL networks and back…”
    Získať plný text
    Journal Article
  7. 7

    Fault Diagnosis of Rolling Bearing Based on Multiscale Intrinsic Mode Function Permutation Entropy and a Stacked Sparse Denoising Autoencoder Autor Dai, Juying, Tang, Jian, Shao, Faming, Huang, Shuzhan, Wang, Yangyang

    ISSN: 2076-3417, 2076-3417
    Vydavateľské údaje: Basel MDPI AG 01.07.2019
    Vydané v Applied sciences (01.07.2019)
    “… To realize representative features mining and automatic recognition of bearing health condition, a diagnostic model of stacked sparse denoising autoencoder (SSDAE…”
    Získať plný text
    Journal Article
  8. 8

    Denoising magnetic resonance spectroscopy (MRS) data using stacked autoencoder for improving signal‐to‐noise ratio and speed of MRS Autor Wang, Jing, Ji, Bing, Lei, Yang, Liu, Tian, Mao, Hui, Yang, Xiaofeng

    ISSN: 0094-2405, 2473-4209, 2473-4209
    Vydavateľské údaje: United States 01.12.2023
    Vydané v Medical physics (Lancaster) (01.12.2023)
    “…Background While magnetic resonance imaging (MRI) provides high resolution anatomical images with sharp soft tissue contrast, magnetic resonance spectroscopy…”
    Získať plný text
    Journal Article
  9. 9

    Denoised Bottleneck Features From Deep Autoencoders for Telephone Conversation Analysis Autor Janod, Killian, Morchid, Mohamed, Dufour, Richard, Linares, Georges, De Mori, Renato

    ISSN: 2329-9290, 2329-9304
    Vydavateľské údaje: Piscataway IEEE 01.09.2017
    “… Recently, denoisng autoencoders (DAE) and stacked autoencoders (SAE) have been proposed with interesting results for acoustic feature denoising tasks…”
    Získať plný text
    Journal Article
  10. 10

    Rough Deep Neural Architecture for Short-Term Wind Speed Forecasting Autor Khodayar, Mahdi, Kaynak, Okyay, Khodayar, Mohammad E.

    ISSN: 1551-3203, 1941-0050
    Vydavateľské údaje: IEEE 01.12.2017
    “…) architecture with stacked autoencoder (SAE) and stacked denoising autoencoder (SDAE) for ultrashort-term and short-term wind speed forecasting. Autoencoders (AEs…”
    Získať plný text
    Journal Article
  11. 11

    Hepatocellular Carcinoma Recognition from Ultrasound Images Using Combinations of Conventional and Deep Learning Techniques Autor Mitrea, Delia-Alexandrina, Brehar, Raluca, Nedevschi, Sergiu, Lupsor-Platon, Monica, Socaciu, Mihai, Badea, Radu

    ISSN: 1424-8220, 1424-8220
    Vydavateľské údaje: Switzerland MDPI AG 24.02.2023
    Vydané v Sensors (Basel, Switzerland) (24.02.2023)
    “…) and Stacked Denoising Autoencoders (SAE), were involved in our research. The best accuracy of 91…”
    Získať plný text
    Journal Article
  12. 12

    A sparse stacked denoising autoencoder with optimized transfer learning applied to the fault diagnosis of rolling bearings Autor Sun, Meidi, Wang, Hui, Liu, Ping, Huang, Shoudao, Fan, Peng

    ISSN: 0263-2241, 1873-412X
    Vydavateľské údaje: London Elsevier Ltd 01.11.2019
    “… As an unsupervised deep learning algorithm, a stacked autoencoder (SAE) can relieve the pressure of labelling data…”
    Získať plný text
    Journal Article
  13. 13

    Toward Robust Fault Identification of Complex Industrial Processes Using Stacked Sparse-Denoising Autoencoder With Softmax Classifier Autor Liu, Jinping, Xu, Longcheng, Xie, Yongfang, Ma, Tianyu, Wang, Jie, Tang, Zhaohui, Gui, Weihua, Yin, Huazhan, Jahanshahi, Hadi

    ISSN: 2168-2267, 2168-2275, 2168-2275
    Vydavateľské údaje: United States IEEE 01.01.2023
    Vydané v IEEE transactions on cybernetics (01.01.2023)
    “…This article proposes a robust end-to-end deep learning-induced fault recognition scheme by stacking multiple sparse-denoising autoencoders with a Softmax classifier, called stacked spare-denoising autoencoder (SSDAE…”
    Získať plný text
    Journal Article
  14. 14

    Life prediction of lithium-ion batteries based on stacked denoising autoencoders Autor Xu, Fan, Yang, Fangfang, Fei, Zicheng, Huang, Zhelin, Tsui, Kwok-Leung

    ISSN: 0951-8320, 1879-0836
    Vydavateľské údaje: Barking Elsevier Ltd 01.04.2021
    “… In this study, a deep learning-based stacked denoising autoencoder (SDAE) method is proposed to directly predict battery life by extracting various battery features…”
    Získať plný text
    Journal Article
  15. 15

    Stacked Fisher autoencoder for SAR change detection Autor Liu, Ganchao, Li, Lingling, Jiao, Licheng, Dong, Yongsheng, Li, Xuelong

    ISSN: 0031-3203, 1873-5142
    Vydavateľské údaje: Elsevier Ltd 01.12.2019
    Vydané v Pattern recognition (01.12.2019)
    “… Stacked autoencoder is effective in image denoising and classification when it is used for synthetic aperture radar (SAR) change detection…”
    Získať plný text
    Journal Article
  16. 16

    Fault prediction of combine harvesters based on stacked denoising autoencoders Autor Qiu, Zhaomei, Shi, Gaoxiang, Zhao, Bo, Jin, Xin, Zhou, Liming, Ma, Tengfei

    ISSN: 1934-6344, 1934-6352
    Vydavateľské údaje: Beijing International Journal of Agricultural and Biological Engineering (IJABE) 01.03.2022
    “… In this study, a combine harvester fault prediction method based on a combination of stacked denoising autoencoders (SDAE…”
    Získať plný text
    Journal Article
  17. 17

    Automatic Diagnosis of Microgrid Networks’ Power Device Faults Based on Stacked Denoising Autoencoders and Adaptive Affinity Propagation Clustering Autor Fan, Bo, Zhang, Xiaodi, Shu, Xin, Xu, Fan

    ISSN: 1076-2787, 1099-0526
    Vydavateľské údaje: Cairo, Egypt Hindawi Publishing Corporation 26.07.2020
    Vydané v Complexity (New York, N.Y.) (26.07.2020)
    “…This paper presents a model based on stacked denoising autoencoders (SDAEs) in deep learning and adaptive affinity propagation (adAP…”
    Získať plný text
    Journal Article
  18. 18

    A deep learning framework for financial time series using stacked autoencoders and long-short term memory Autor Bao, Wei, Yue, Jun, Rao, Yulei

    ISSN: 1932-6203, 1932-6203
    Vydavateľské údaje: United States Public Library of Science 14.07.2017
    Vydané v PloS one (14.07.2017)
    “… This study presents a novel deep learning framework where wavelet transforms (WT), stacked autoencoders (SAEs…”
    Získať plný text
    Journal Article
  19. 19

    Data-Driven Bearing Fault Diagnosis of Microgrid Network Power Device Based on a Stacked Denoising Autoencoder in Deep Learning and Clustering by Fast Search without Data Labels Autor Zhang, Xiaodi, Li, Xin, Shu, Xin, Xu, Fan

    ISSN: 1076-2787, 1099-0526
    Vydavateľské údaje: Cairo, Egypt Hindawi Publishing Corporation 02.11.2020
    Vydané v Complexity (New York, N.Y.) (02.11.2020)
    “… In this paper, we use the stacked denoising autoencoder (SDAE) model in deep learning to construct HI directly from the microgrid power equipment of raw signals in bearings…”
    Získať plný text
    Journal Article
  20. 20

    An imbalanced data classification algorithm of improved autoencoder neural network Autor Chenggang Zhang, Wei Gao, Jiazhi Song, Jinqing Jiang

    ISBN: 9781467377805, 1467377805
    Vydavateľské údaje: IEEE 01.02.2016
    “… Experiment shows that, compared with the traditional stacked autoencoder neural network (SAE) and oversampling autoencoder neural network without denoising process…”
    Získať plný text
    Konferenčný príspevok..