Suchergebnisse - stack sparse autoencoder deep learning model ((ssae OR sae))~

Andere Suchmöglichkeiten:

  • Treffer 1 - 10 von 10
Treffer weiter einschränken
  1. 1

    Microscopic segmentation and classification of COVID‐19 infection with ensemble convolutional neural network von Amin, Javeria, Anjum, Muhammad Almas, Sharif, Muhammad, Rehman, Amjad, Saba, Tanzila, Zahra, Rida

    ISSN: 1059-910X, 1097-0029, 1097-0029
    Veröffentlicht: Hoboken, USA John Wiley & Sons, Inc 01.01.2022
    Veröffentlicht in Microscopy research and technique (01.01.2022)
    “… In Phase III, segmented images are passed to the stack sparse autoencoder (SSAE …”
    Volltext
    Journal Article
  2. 2

    Denoising magnetic resonance spectroscopy (MRS) data using stacked autoencoder for improving signal‐to‐noise ratio and speed of MRS von Wang, Jing, Ji, Bing, Lei, Yang, Liu, Tian, Mao, Hui, Yang, Xiaofeng

    ISSN: 0094-2405, 2473-4209, 2473-4209
    Veröffentlicht: United States 01.12.2023
    Veröffentlicht in Medical physics (Lancaster) (01.12.2023)
    “… ) to achieve sufficient SNR comes at the cost of a long acquisition time. Purpose We propose to use deep …”
    Volltext
    Journal Article
  3. 3

    PEMFC Residual Life Prediction Using Sparse Autoencoder-Based Deep Neural Network von Liu, Jiawei, Li, Qi, Han, Ying, Zhang, Guorui, Meng, Xiang, Yu, Jiaxi, Chen, Weirong

    ISSN: 2332-7782, 2577-4212, 2332-7782
    Veröffentlicht: Piscataway IEEE 01.12.2019
    Veröffentlicht in IEEE transactions on transportation electrification (01.12.2019)
    “… ) under dynamic operating conditions, this article proposes a PEMFC RUL forecast technique based on the sparse autoencoder (SAE …”
    Volltext
    Journal Article
  4. 4

    Deep Neural Network Based on A Stacked Autoencoder For 3D-Finger Knuckle Recognition von Al-Janabi, Dua'a Hamed, Al-Juboori, Ali Mohsin

    Veröffentlicht: IEEE 20.03.2023
    “… This paper offers an effective deep learning technique, stacked sparse autoencoders (SSAEs), to identify the individual through a 3d finger knuckle …”
    Volltext
    Tagungsbericht
  5. 5

    Fault Diagnosis of Rolling Bearing Based on Multiscale Intrinsic Mode Function Permutation Entropy and a Stacked Sparse Denoising Autoencoder von Dai, Juying, Tang, Jian, Shao, Faming, Huang, Shuzhan, Wang, Yangyang

    ISSN: 2076-3417, 2076-3417
    Veröffentlicht: Basel MDPI AG 01.07.2019
    Veröffentlicht in Applied sciences (01.07.2019)
    “… The sparse criterion in SAE, corrupting operation in DAE and reasonable designing of the stack order of autoencoders help to mine essential information of the input and improve fault pattern classification robustness …”
    Volltext
    Journal Article
  6. 6

    Deep Learning Model of Object Classification Feature Based on HOG von HE Xiping,ZHANG Qionghua,LIU Bo

    ISSN: 1000-3428
    Veröffentlicht: Editorial Office of Computer Engineering 01.12.2016
    Veröffentlicht in Ji suan ji gong cheng (01.12.2016)
    “… )-based feature deep learning model for object classification is proposed.For the requirements of high timeliness,offline deep learning strategy is applied to the classifier model to save its online training …”
    Volltext
    Journal Article
  7. 7

    Revolutionizing Software Defect Prediction Through Deep Learning von G, Selvin Jose, Charles, J

    Veröffentlicht: IEEE 08.08.2024
    “… ) techniques, specifically focusing on Convolutional Neural Networks (CNN) and Stack Sparse Autoencoders (SSAE …”
    Volltext
    Tagungsbericht
  8. 8

    Design of peer-to-peer energy trading in transactive energy management for charge estimation of lithium-ion battery on hybrid electric vehicles von Annamalai, Subramanian, Mangaiyarkarasi, S.P., Rani, M.Santhosh, Ashokkumar, V., Gupta, Deepak, Rodrigues, Joel JPC

    ISSN: 0378-7796, 1873-2046
    Veröffentlicht: Amsterdam Elsevier B.V 01.06.2022
    Veröffentlicht in Electric power systems research (01.06.2022)
    “… •To develop optimal machine learning based SOC estimation (OML-SOCE) model for HEVs in TEM.•SSAE are optimally adjusted by the use of SSA in such a way that the prediction performance can be considerably improved …”
    Volltext
    Journal Article
  9. 9
  10. 10

    基于HOG的目标分类特征深度学习模型 von 何希平 张琼华 刘波

    ISSN: 1000-3428
    Veröffentlicht: 重庆工商大学 计算机科学与信息工程学院,重庆 400067%重庆工商大学 图书馆,重庆,400067 2016
    Veröffentlicht in 计算机工程 (2016)
    “… 为提高低配置计算环境中的视觉目标实时在线分类特征提取的时效性和分类准确率,提出一种新的目标分类特征深度学习模型。根据高时效性要求,选用分类器模型离线深度学习的策 …”
    Volltext
    Journal Article