Suchergebnisse - sparse convolutional autoencoder ((same OR sage))*

Andere Suchmöglichkeiten:

  1. 1

    Feature extraction of fields of fluid dynamics data using sparse convolutional autoencoder von Obayashi, Wataru, Aono, Hikaru, Tatsukawa, Tomoaki, Fujii, Kozo

    ISSN: 2158-3226, 2158-3226
    Veröffentlicht: Melville American Institute of Physics 01.10.2021
    Veröffentlicht in AIP advances (01.10.2021)
    “… The technique here is based on the convolutional and sparse autoencoder learning algorithms and is called sparse convolutional autoencoder …”
    Volltext
    Journal Article
  2. 2

    Intelligent Fault Diagnosis Method for Blade Damage of Quad-Rotor UAV Based on Stacked Pruning Sparse Denoising Autoencoder and Convolutional Neural Network von Yang, Pu, Wen, Chenwan, Geng, Huilin, Liu, Peng

    ISSN: 2075-1702, 2075-1702
    Veröffentlicht: Basel MDPI AG 01.12.2021
    Veröffentlicht in Machines (Basel) (01.12.2021)
    “… This paper introduces a new intelligent fault diagnosis method based on stack pruning sparse denoising autoencoder and convolutional neural network (sPSDAE-CNN …”
    Volltext
    Journal Article
  3. 3

    Temperature scaling unmixing framework based on convolutional autoencoder von Xu, Jin, Xu, Mingming, Liu, Shanwei, Sheng, Hui, Yang, Zhiru

    ISSN: 1569-8432, 1872-826X
    Veröffentlicht: Elsevier B.V 01.05.2024
    “… •The framework is a new spatial level constraint method and can be transferred to other convolutional autoencoder-based methods …”
    Volltext
    Journal Article
  4. 4

    Deep learning for pixel-level image fusion: Recent advances and future prospects von Liu, Yu, Chen, Xun, Wang, Zengfu, Wang, Z. Jane, Ward, Rabab K., Wang, Xuesong

    ISSN: 1566-2535, 1872-6305
    Veröffentlicht: Elsevier B.V 01.07.2018
    Veröffentlicht in Information fusion (01.07.2018)
    “… By integrating the information contained in multiple images of the same scene into one composite image, pixel-level image fusion is recognized as having high significance in a variety of fields …”
    Volltext
    Journal Article
  5. 5

    3D Segmentation of Perivascular Spaces on T1-Weighted 3 Tesla MR Images With a Convolutional Autoencoder and a U-Shaped Neural Network von Boutinaud, Philippe, Tsuchida, Ami, Laurent, Alexandre, Adonias, Filipa, Hanifehlou, Zahra, Nozais, Victor, Verrecchia, Violaine, Lampe, Leonie, Zhang, Junyi, Zhu, Yi-Cheng, Tzourio, Christophe, Mazoyer, Bernard, Joliot, Marc

    ISSN: 1662-5196, 1662-5196
    Veröffentlicht: Switzerland Frontiers Research Foundation 18.06.2021
    Veröffentlicht in Frontiers in neuroinformatics (18.06.2021)
    “… ) in deep white matter (DWM) and basal ganglia (BG). This algorithm is based on an autoencoder and a U-shaped network (U-net …”
    Volltext
    Journal Article
  6. 6

    K-Means Clustering Optimizing Deep Stacked Sparse Autoencoder von Bi, Yandong, Wang, Peng, Guo, Xuchao, Wang, Zhijun, Cheng, Shuhan

    ISSN: 1557-2064, 1557-2072
    Veröffentlicht: New York Springer US 01.12.2019
    Veröffentlicht in Sensing and imaging (01.12.2019)
    “… How to speed up training is a problem deserving of study. In order to accelerate training, K-means clustering optimizing deep stacked sparse autoencoder (K-means sparse SAE …”
    Volltext
    Journal Article
  7. 7

    Image Compression: Sparse Coding vs. Bottleneck Autoencoders von Watkins, Yijing, Iaroshenko, Oleksandr, Sayeh, Mohammad, Kenyon, Garrett

    ISSN: 2473-3598
    Veröffentlicht: IEEE 01.04.2018
    “… In this work, we explore the ability of sparse coding to improve reconstructed image quality for the same degree of compression …”
    Volltext
    Tagungsbericht
  8. 8

    Multi-frequency and multi-domain human activity recognition based on SFCW radar using deep learning von Jia, Yong, Guo, Yong, Wang, Gang, Song, Ruiyuan, Cui, Guolong, Zhong, Xiaoling

    ISSN: 0925-2312, 1872-8286
    Veröffentlicht: Elsevier B.V 15.07.2021
    Veröffentlicht in Neurocomputing (Amsterdam) (15.07.2021)
    “… On the other hand, multi-frequency spectrograms furnish same type of features while with different …”
    Volltext
    Journal Article
  9. 9

    A Robust System for Noisy Image Classification Combining Denoising Autoencoder and Convolutional Neural Network von Singha, Sudipta, Imran, Sk, A., M., Murase, Kazuyuki

    ISSN: 2158-107X, 2156-5570
    Veröffentlicht: West Yorkshire Science and Information (SAI) Organization Limited 2018
    “… To solve this issue, several researches have been conducted utilizing denoising autoencoder (DAE …”
    Volltext
    Journal Article
  10. 10

    Non-revisiting genetic cost-sensitive sparse autoencoder for imbalanced fault diagnosis von Peng, Peng, Zhang, Wenjia, Zhang, Yi, Wang, Hongwei, Zhang, Heming

    ISSN: 1568-4946, 1872-9681
    Veröffentlicht: Elsevier B.V 01.01.2022
    Veröffentlicht in Applied soft computing (01.01.2022)
    “… ). In this research, we propose a non-revisiting genetic cost-sensitive sparse autoencoder(NrGCS-SAE) solution, which not only incorporates cost-sensitive learning with sparse autoencoder but also solves the problem of class weights assignment …”
    Volltext
    Journal Article
  11. 11

    Multiday EMG-Based Classification of Hand Motions with Deep Learning Techniques von Zia ur Rehman, Muhammad, Waris, Asim, Gilani, Syed Omer, Jochumsen, Mads, Niazi, Imran Khan, Jamil, Mohsin, Farina, Dario, Kamavuako, Ernest Nlandu

    ISSN: 1424-8220, 1424-8220
    Veröffentlicht: Switzerland MDPI AG 01.08.2018
    Veröffentlicht in Sensors (Basel, Switzerland) (01.08.2018)
    “… (MYB, a wearable EMG sensor). The classification was performed by a convolutional neural network (CNN …”
    Volltext
    Journal Article
  12. 12

    NOISY IMAGE CLASSIFICATION USING HYBRID DEEP LEARNING METHODS von Roy, Sudipta Singha, Ahmed, Mahtab, Akhand, Muhammad Aminul Haque

    ISSN: 1675-414X, 2180-3862
    Veröffentlicht: 01.04.2018
    Veröffentlicht in Journal of ICT (01.04.2018)
    Volltext
    Journal Article
  13. 13

    Advancing Handwritten Digit Recognition in Defense Systems: Comparative Analysis of Autoencoder-Based Transfer Learning von Jain, Shruti, Kapur, Shivani, Vandana

    Veröffentlicht: IEEE 21.07.2025
    “… These practical challenges led to the need for the development of models that can obtain knowledge from one domain and use it in another similar (but not same …”
    Volltext
    Tagungsbericht
  14. 14

    Variational Autoencoders for Localized Mesh Deformation Component Analysis von Tan, Qingyang, Zhang, Ling-Xiao, Yang, Jie, Lai, Yu-Kun, Gao, Lin

    ISSN: 0162-8828, 1939-3539, 2160-9292, 1939-3539
    Veröffentlicht: New York IEEE 01.10.2022
    “… In this paper we propose a mesh-based variational autoencoder architecture that is able to cope with meshes with irregular connectivity and nonlinear deformations, assuming that the analyzed dataset …”
    Volltext
    Journal Article
  15. 15

    Seismic noise attenuation by signal reconstruction: an unsupervised machine learning approach von Gao, Yang, Zhao, Pingqi, Li, Guofa, Li, Hao

    ISSN: 0016-8025, 1365-2478
    Veröffentlicht: Houten Wiley Subscription Services, Inc 01.06.2021
    Veröffentlicht in Geophysical Prospecting (01.06.2021)
    “… ABSTRACT Random noise attenuation is an essential step in seismic data processing for improving seismic data quality and signal‐to‐noise ratio. We adopt an …”
    Volltext
    Journal Article
  16. 16

    A Cylindrical Near-Field Acoustical Holography Method Based on Cylindrical Translation Window Expansion and an Autoencoder Stacked with 3D-CNN Layers von Wang, Jiaxuan, Zhang, Weihan, Zhang, Zhifu, Huang, Yizhe

    ISSN: 1424-8220, 1424-8220
    Veröffentlicht: Switzerland MDPI AG 20.04.2023
    Veröffentlicht in Sensors (Basel, Switzerland) (20.04.2023)
    “… The performance of near-field acoustic holography (NAH) with a sparse sampling rate will be affected by spatial aliasing or inverse ill-posed equations …”
    Volltext
    Journal Article
  17. 17

    A radar emitter structural identification method for complex conditions based on compressed sensing and an autoencoder von Song, Yu, Zhang, Wei, Yang, Yaozu, Zhang, Xin, Jiang, Yilin

    ISSN: 0924-090X, 1573-269X
    Veröffentlicht: Dordrecht Springer Nature B.V 01.08.2025
    Veröffentlicht in Nonlinear dynamics (01.08.2025)
    “… A stacked convolutional autoencoder (SCAE) network with strong representation learning capability, along with a loss function that integrates time-domain and sparse-domain constraints (TCS …”
    Volltext
    Journal Article
  18. 18

    A radar emitter structural identification method for complex conditions based on compressed sensing and an autoencoder: A radar emitter structural identification method for complex conditions based von Song, Yu, Zhang, Wei, Yang, Yaozu, Zhang, Xin, Jiang, Yilin

    ISSN: 0924-090X, 1573-269X
    Veröffentlicht: Dordrecht Springer Netherlands 01.08.2025
    Veröffentlicht in Nonlinear dynamics (01.08.2025)
    “… A stacked convolutional autoencoder (SCAE) network with strong representation learning capability, along with a loss function that integrates time-domain and sparse-domain constraints (TCS …”
    Volltext
    Journal Article
  19. 19

    Deep Convolutional Autoencoder Architecture for Predictive Maintenance Applications von Catak, Yigit, Sahin, Kerem, Guney, Osman Berke, Ozkan, Huseyin

    Veröffentlicht: IEEE 15.05.2022
    “… In this study, we develop an auto-encoder extension of previously proposed deep convolutional network that is trained successfully on the modelling of electroencephalogram (EEG …”
    Volltext
    Tagungsbericht
  20. 20

    Compression of Vehicle Trajectories with a Variational Autoencoder von Rákos, Olivér, Aradi, Szilárd, Bécsi, Tamás, Szalay, Zsolt

    ISSN: 2076-3417, 2076-3417
    Veröffentlicht: Basel MDPI AG 01.10.2020
    Veröffentlicht in Applied sciences (01.10.2020)
    “… ). This paper presents a Variational Autoencoder (VAE) solution to solve the compression problem, and as an added benefit, it also provides classification information …”
    Volltext
    Journal Article