Suchergebnisse - sparse convolutional autoencoder ((sage OR space))

Andere Suchmöglichkeiten:

  1. 1

    A novel multichannel sparse convolutional autoencoder for electrocardiogram signal compression von Bekiryazıcı, Tahir, Damkacı, Mehmet, Aydemir, Gürkan, Gürkan, Hakan

    ISSN: 0022-0736, 1532-8430, 1532-8430
    Veröffentlicht: United States Elsevier Inc 01.11.2025
    Veröffentlicht in Journal of electrocardiology (01.11.2025)
    “… Deep neural networks, particularly autoencoders, offer significant potential for compressing ECG signals by mapping them to lower-dimensional spaces …”
    Volltext
    Journal Article
  2. 2

    DOA estimation method for sparse arrays based on deep convolutional autoencoder and deep convolutional neural network von Guo, Shuhan, Zhang, Qin, Fu, Xiaolong, Zheng, Guimei, Zhou, Hao

    ISSN: 1051-2004
    Veröffentlicht: Elsevier Inc 01.01.2026
    Veröffentlicht in Digital signal processing (01.01.2026)
    “… This paper proposes a Direction-of-Arrival (DOA) estimation method based on Deep Convolutional Autoencoder (DCAE …”
    Volltext
    Journal Article
  3. 3

    TumorAwareNet: Deep representation learning with attention based sparse convolutional denoising autoencoder for brain tumor recognition von Bodapati, Jyostna Devi, Balaji, Bharadwaj Bagepalli

    ISSN: 1573-7721, 1380-7501, 1573-7721
    Veröffentlicht: New York Springer US 01.03.2024
    Veröffentlicht in Multimedia tools and applications (01.03.2024)
    “… ) images suitable for effective tumor recognition. The proposed model employs a Sparse Convolutional Denoising Autoencoder (SCDA …”
    Volltext
    Journal Article
  4. 4

    XAI-DSCSA: explainable-AI-based deep semi-supervised convolutional sparse autoencoder for facial expression recognition von Mohana, M., Subashini, P., Ghinea, George

    ISSN: 1863-1703, 1863-1711
    Veröffentlicht: London Springer London 01.05.2025
    Veröffentlicht in Signal, image and video processing (01.05.2025)
    “… as the Deep Semi-supervised Convolutional Sparse Autoencoder to address the aforementioned issues and enhance FER performance and prediction …”
    Volltext
    Journal Article
  5. 5

    Online Public Opinion Situation Assessment by Deep Sparse Autoencoder and Time-Series Modeling Convolutional Neural Network von Sun, Wei, Xiao, Ran, Li, Xuanmo

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: Piscataway IEEE 2025
    Veröffentlicht in IEEE access (2025)
    “… This model employs Deep Sparse Autoencoder (DSAE) and Time-Series Modeling Convolutional Neural Networks (TBSMA-CNN …”
    Volltext
    Journal Article
  6. 6

    CWGAN-Based Channel Modeling of Convolutional Autoencoder-Aided SCMA for Satellite-Terrestrial Communication von Li, Dongbo, Liu, Xiangyu, Yin, Zhisheng, Cheng, Nan, Liu, Jie

    ISSN: 2327-4662, 2327-4662
    Veröffentlicht: Piscataway IEEE 15.11.2024
    Veröffentlicht in IEEE internet of things journal (15.11.2024)
    “… In this article, a convolutional autoencoder-aided SCMA paradigm based on the stochastic channel modeling and autoencoder structure is developed …”
    Volltext
    Journal Article
  7. 7

    Prior knowledge embedding convolutional autoencoder: A single-source domain generalized fault diagnosis framework under small samples von Lu, Feiyu, Tong, Qingbin, Jiang, Xuedong, Du, Xin, Xu, Jianjun, Huo, Jingyi

    ISSN: 0166-3615
    Veröffentlicht: Elsevier B.V 01.01.2025
    Veröffentlicht in Computers in industry (01.01.2025)
    “… generalization fault diagnosis (SDGFD) framework, the prior knowledge embedded convolutional autoencoder (PKECA), is proposed …”
    Volltext
    Journal Article
  8. 8

    Temperature scaling unmixing framework based on convolutional autoencoder von Xu, Jin, Xu, Mingming, Liu, Shanwei, Sheng, Hui, Yang, Zhiru

    ISSN: 1569-8432, 1872-826X
    Veröffentlicht: Elsevier B.V 01.05.2024
    “… •The framework is a new spatial level constraint method and can be transferred to other convolutional autoencoder-based methods …”
    Volltext
    Journal Article
  9. 9

    Early Parkinson's Disease Prediction Using rS-fMRI Functional Connectivity and Autoencoder Graph Convolutional Network von Limas, Lesbia Lopez, Manian, Vidya

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: Piscataway IEEE 2025
    Veröffentlicht in IEEE access (2025)
    “… We propose a deep learning framework that combines resting-state functional MRI (rs-fMRI) data and a Graph Convolutional Network (GCN …”
    Volltext
    Journal Article
  10. 10

    Deep Learning Augmented Data Assimilation: Reconstructing Missing Information with Convolutional Autoencoders von Wang, Yueya, Shi, Xiaoming, Lei, Lili, Fung, Jimmy Chi-Hung

    ISSN: 0027-0644, 1520-0493
    Veröffentlicht: Washington American Meteorological Society 01.08.2022
    Veröffentlicht in Monthly weather review (01.08.2022)
    “… By training a convolutional autoencoder (CAE) with a long simulation at a coarse “forecast” resolution (T63), we obtained a deep learning approximation …”
    Volltext
    Journal Article
  11. 11

    3D Segmentation of Perivascular Spaces on T1-Weighted 3 Tesla MR Images With a Convolutional Autoencoder and a U-Shaped Neural Network von Boutinaud, Philippe, Tsuchida, Ami, Laurent, Alexandre, Adonias, Filipa, Hanifehlou, Zahra, Nozais, Victor, Verrecchia, Violaine, Lampe, Leonie, Zhang, Junyi, Zhu, Yi-Cheng, Tzourio, Christophe, Mazoyer, Bernard, Joliot, Marc

    ISSN: 1662-5196, 1662-5196
    Veröffentlicht: Switzerland Frontiers Research Foundation 18.06.2021
    Veröffentlicht in Frontiers in neuroinformatics (18.06.2021)
    “… We implemented a deep learning (DL) algorithm for the 3-dimensional segmentation of perivascular spaces (PVSs …”
    Volltext
    Journal Article
  12. 12

    Deep hyperspectral clustering using attention-enhanced 3D-2D convolutional autoencoder for mineral mapping von Peyghambari, Sima, Zhang, Yun

    ISSN: 2352-9385, 2352-9385
    Veröffentlicht: Elsevier B.V 01.08.2025
    Veröffentlicht in Remote sensing applications (01.08.2025)
    “… However, the most commonly used 3D-convolutional autoencoder (3D-CAE) models have several disadvantages, including intensive computational costs and the potential to lose spatial information …”
    Volltext
    Journal Article
  13. 13

    Deep Graph Convolutional Autoencoder With Conditional Normalizing Flow for Power Distribution Systems Fault Classification and Location von Saffari, Mohsen, Khodayar, Mahdi, Khodayar, Mohammad E., Fazlhashemi, Seyed Saeed

    ISSN: 2691-4581, 2691-4581
    Veröffentlicht: IEEE 01.09.2025
    Veröffentlicht in IEEE transactions on artificial intelligence (01.09.2025)
    “… To overcome these limitations, a novel deep space-time generative graph convolutional autoencoder (SGGCA) is proposed …”
    Volltext
    Journal Article
  14. 14

    Smart manufacturing under limited and heterogeneous data: a sim-to-real transfer learning with convolutional variational autoencoder in thermoforming von Ramezankhani, Milad, Harandi, Mehrtash, Seethaler, Rudolf, Milani, Abbas S.

    ISSN: 0951-192X, 1362-3052
    Veröffentlicht: Taylor & Francis 01.02.2024
    “… Data in advanced manufacturing are often sparse and collected from various sensory devices in a heterogeneous and multi-modal fashion …”
    Volltext
    Journal Article
  15. 15

    SDC-GAE: Structural Difference Compensation Graph Autoencoder for Unsupervised Multimodal Change Detection von Han, Te, Tang, Yuqi, Chen, Yuzeng, Yang, Xin, Guo, Yuqiang, Jiang, Shujing

    ISSN: 0196-2892, 1558-0644
    Veröffentlicht: New York IEEE 2024
    “… To address the reliance on labeled data and enhance the robustness of structural features in the existing methods, we propose a structure difference compensation graph autoencoder (SDC-GAE …”
    Volltext
    Journal Article
  16. 16

    Leveraging variant of CAE with sparse convolutional embedding and two-stage application-driven data augmentation for image clustering von Liu, Yanming, Liu, Jinglei

    ISSN: 1432-7643, 1433-7479
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2025
    Veröffentlicht in Soft computing (Berlin, Germany) (01.02.2025)
    “… To achieve this, we propose a variant of the convolutional autoencoder (CAE) called SCDAC, which incorporates sparse convolutional embedding and a two-stage application-driven data augmentation approach …”
    Volltext
    Journal Article
  17. 17

    A novel stacked sparse denoising autoencoder for mammography restoration to visual interpretation of breast lesion von Ghosh, Swarup Kr, Biswas, Biswajit, Ghosh, Anupam

    ISSN: 1864-5909, 1864-5917
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2021
    Veröffentlicht in Evolutionary intelligence (01.03.2021)
    “… A deep stacked convolutional autoencoder is designed by combining the autoencoder and the deconvolution network which conjointly reduces noisy artifacts and improves image details in mammogram …”
    Volltext
    Journal Article
  18. 18

    Applying Convolutional Neural Networks to data on unstructured meshes with space-filling curves von Heaney, Claire E., Li, Yuling, Matar, Omar K., Pain, Christopher C.

    ISSN: 0893-6080, 1879-2782, 1879-2782
    Veröffentlicht: United States Elsevier Ltd 01.07.2024
    Veröffentlicht in Neural networks (01.07.2024)
    “… This paper presents the first classical Convolutional Neural Network (CNN) that can be applied directly to data from unstructured finite element meshes or control volume grids …”
    Volltext
    Journal Article
  19. 19

    Feature learning and change feature classification based on deep learning for ternary change detection in SAR images von Gong, Maoguo, Yang, Hailun, Zhang, Puzhao

    ISSN: 0924-2716, 1872-8235
    Veröffentlicht: Elsevier B.V 01.07.2017
    Veröffentlicht in ISPRS journal of photogrammetry and remote sensing (01.07.2017)
    “… In this study, sparse autoencoder, convolutional neural networks (CNN) and unsupervised clustering are combined to solve ternary change detection problem without any supervison …”
    Volltext
    Journal Article
  20. 20

    Cost-Benefit Analysis of Metavariable Variation in Convolutional Autoencoders Applied to Acoustic Backscattering Data from Small Underwater Targets von Linhardt, Timothy, Gupta, Ananya Sen

    Veröffentlicht: IEEE 17.10.2022
    Veröffentlicht in OCEANS 2022, Hampton Roads (17.10.2022)
    “… ) of the data to a low-dimensional vector space with convolutional autoencoders and sparse convolutional autoencoders …”
    Volltext
    Tagungsbericht