Výsledky vyhľadávania - sparse convolutional autoencoder (((same OR sage) OR space))~

  1. 1

    A novel multichannel sparse convolutional autoencoder for electrocardiogram signal compression Autor Bekiryazıcı, Tahir, Damkacı, Mehmet, Aydemir, Gürkan, Gürkan, Hakan

    ISSN: 0022-0736, 1532-8430, 1532-8430
    Vydavateľské údaje: United States Elsevier Inc 01.11.2025
    Vydané v Journal of electrocardiology (01.11.2025)
    “… Deep neural networks, particularly autoencoders, offer significant potential for compressing ECG signals by mapping them to lower-dimensional spaces…”
    Získať plný text
    Journal Article
  2. 2

    DOA estimation method for sparse arrays based on deep convolutional autoencoder and deep convolutional neural network Autor Guo, Shuhan, Zhang, Qin, Fu, Xiaolong, Zheng, Guimei, Zhou, Hao

    ISSN: 1051-2004
    Vydavateľské údaje: Elsevier Inc 01.01.2026
    Vydané v Digital signal processing (01.01.2026)
    “…This paper proposes a Direction-of-Arrival (DOA) estimation method based on Deep Convolutional Autoencoder (DCAE…”
    Získať plný text
    Journal Article
  3. 3

    TumorAwareNet: Deep representation learning with attention based sparse convolutional denoising autoencoder for brain tumor recognition Autor Bodapati, Jyostna Devi, Balaji, Bharadwaj Bagepalli

    ISSN: 1573-7721, 1380-7501, 1573-7721
    Vydavateľské údaje: New York Springer US 01.03.2024
    Vydané v Multimedia tools and applications (01.03.2024)
    “…) images suitable for effective tumor recognition. The proposed model employs a Sparse Convolutional Denoising Autoencoder (SCDA…”
    Získať plný text
    Journal Article
  4. 4

    XAI-DSCSA: explainable-AI-based deep semi-supervised convolutional sparse autoencoder for facial expression recognition Autor Mohana, M., Subashini, P., Ghinea, George

    ISSN: 1863-1703, 1863-1711
    Vydavateľské údaje: London Springer London 01.05.2025
    Vydané v Signal, image and video processing (01.05.2025)
    “… as the Deep Semi-supervised Convolutional Sparse Autoencoder to address the aforementioned issues and enhance FER performance and prediction…”
    Získať plný text
    Journal Article
  5. 5

    Online Public Opinion Situation Assessment by Deep Sparse Autoencoder and Time-Series Modeling Convolutional Neural Network Autor Sun, Wei, Xiao, Ran, Li, Xuanmo

    ISSN: 2169-3536, 2169-3536
    Vydavateľské údaje: Piscataway IEEE 2025
    Vydané v IEEE access (2025)
    “… This model employs Deep Sparse Autoencoder (DSAE) and Time-Series Modeling Convolutional Neural Networks (TBSMA-CNN…”
    Získať plný text
    Journal Article
  6. 6

    CWGAN-Based Channel Modeling of Convolutional Autoencoder-Aided SCMA for Satellite-Terrestrial Communication Autor Li, Dongbo, Liu, Xiangyu, Yin, Zhisheng, Cheng, Nan, Liu, Jie

    ISSN: 2327-4662, 2327-4662
    Vydavateľské údaje: Piscataway IEEE 15.11.2024
    Vydané v IEEE internet of things journal (15.11.2024)
    “… In this article, a convolutional autoencoder-aided SCMA paradigm based on the stochastic channel modeling and autoencoder structure is developed…”
    Získať plný text
    Journal Article
  7. 7

    Feature extraction of fields of fluid dynamics data using sparse convolutional autoencoder Autor Obayashi, Wataru, Aono, Hikaru, Tatsukawa, Tomoaki, Fujii, Kozo

    ISSN: 2158-3226, 2158-3226
    Vydavateľské údaje: Melville American Institute of Physics 01.10.2021
    Vydané v AIP advances (01.10.2021)
    “… The technique here is based on the convolutional and sparse autoencoder learning algorithms and is called sparse convolutional autoencoder…”
    Získať plný text
    Journal Article
  8. 8

    Temperature scaling unmixing framework based on convolutional autoencoder Autor Xu, Jin, Xu, Mingming, Liu, Shanwei, Sheng, Hui, Yang, Zhiru

    ISSN: 1569-8432, 1872-826X
    Vydavateľské údaje: Elsevier B.V 01.05.2024
    “…•The framework is a new spatial level constraint method and can be transferred to other convolutional autoencoder-based methods…”
    Získať plný text
    Journal Article
  9. 9

    Prior knowledge embedding convolutional autoencoder: A single-source domain generalized fault diagnosis framework under small samples Autor Lu, Feiyu, Tong, Qingbin, Jiang, Xuedong, Du, Xin, Xu, Jianjun, Huo, Jingyi

    ISSN: 0166-3615
    Vydavateľské údaje: Elsevier B.V 01.01.2025
    Vydané v Computers in industry (01.01.2025)
    “… generalization fault diagnosis (SDGFD) framework, the prior knowledge embedded convolutional autoencoder (PKECA), is proposed…”
    Získať plný text
    Journal Article
  10. 10

    Intelligent Fault Diagnosis Method for Blade Damage of Quad-Rotor UAV Based on Stacked Pruning Sparse Denoising Autoencoder and Convolutional Neural Network Autor Yang, Pu, Wen, Chenwan, Geng, Huilin, Liu, Peng

    ISSN: 2075-1702, 2075-1702
    Vydavateľské údaje: Basel MDPI AG 01.12.2021
    Vydané v Machines (Basel) (01.12.2021)
    “…This paper introduces a new intelligent fault diagnosis method based on stack pruning sparse denoising autoencoder and convolutional neural network (sPSDAE-CNN…”
    Získať plný text
    Journal Article
  11. 11

    3D Segmentation of Perivascular Spaces on T1-Weighted 3 Tesla MR Images With a Convolutional Autoencoder and a U-Shaped Neural Network Autor Boutinaud, Philippe, Tsuchida, Ami, Laurent, Alexandre, Adonias, Filipa, Hanifehlou, Zahra, Nozais, Victor, Verrecchia, Violaine, Lampe, Leonie, Zhang, Junyi, Zhu, Yi-Cheng, Tzourio, Christophe, Mazoyer, Bernard, Joliot, Marc

    ISSN: 1662-5196, 1662-5196
    Vydavateľské údaje: Switzerland Frontiers Research Foundation 18.06.2021
    Vydané v Frontiers in neuroinformatics (18.06.2021)
    “…We implemented a deep learning (DL) algorithm for the 3-dimensional segmentation of perivascular spaces (PVSs…”
    Získať plný text
    Journal Article
  12. 12

    Early Parkinson's Disease Prediction Using rS-fMRI Functional Connectivity and Autoencoder Graph Convolutional Network Autor Limas, Lesbia Lopez, Manian, Vidya

    ISSN: 2169-3536, 2169-3536
    Vydavateľské údaje: Piscataway IEEE 2025
    Vydané v IEEE access (2025)
    “… We propose a deep learning framework that combines resting-state functional MRI (rs-fMRI) data and a Graph Convolutional Network (GCN…”
    Získať plný text
    Journal Article
  13. 13

    Deep Learning Augmented Data Assimilation: Reconstructing Missing Information with Convolutional Autoencoders Autor Wang, Yueya, Shi, Xiaoming, Lei, Lili, Fung, Jimmy Chi-Hung

    ISSN: 0027-0644, 1520-0493
    Vydavateľské údaje: Washington American Meteorological Society 01.08.2022
    Vydané v Monthly weather review (01.08.2022)
    “… By training a convolutional autoencoder (CAE) with a long simulation at a coarse “forecast” resolution (T63), we obtained a deep learning approximation…”
    Získať plný text
    Journal Article
  14. 14

    Deep learning for pixel-level image fusion: Recent advances and future prospects Autor Liu, Yu, Chen, Xun, Wang, Zengfu, Wang, Z. Jane, Ward, Rabab K., Wang, Xuesong

    ISSN: 1566-2535, 1872-6305
    Vydavateľské údaje: Elsevier B.V 01.07.2018
    Vydané v Information fusion (01.07.2018)
    “… By integrating the information contained in multiple images of the same scene into one composite image, pixel-level image fusion is recognized as having high significance in a variety of fields…”
    Získať plný text
    Journal Article
  15. 15

    Deep hyperspectral clustering using attention-enhanced 3D-2D convolutional autoencoder for mineral mapping Autor Peyghambari, Sima, Zhang, Yun

    ISSN: 2352-9385, 2352-9385
    Vydavateľské údaje: Elsevier B.V 01.08.2025
    Vydané v Remote sensing applications (01.08.2025)
    “… However, the most commonly used 3D-convolutional autoencoder (3D-CAE) models have several disadvantages, including intensive computational costs and the potential to lose spatial information…”
    Získať plný text
    Journal Article
  16. 16

    Deep Graph Convolutional Autoencoder With Conditional Normalizing Flow for Power Distribution Systems Fault Classification and Location Autor Saffari, Mohsen, Khodayar, Mahdi, Khodayar, Mohammad E., Fazlhashemi, Seyed Saeed

    ISSN: 2691-4581, 2691-4581
    Vydavateľské údaje: IEEE 01.09.2025
    “… To overcome these limitations, a novel deep space-time generative graph convolutional autoencoder (SGGCA) is proposed…”
    Získať plný text
    Journal Article
  17. 17

    Smart manufacturing under limited and heterogeneous data: a sim-to-real transfer learning with convolutional variational autoencoder in thermoforming Autor Ramezankhani, Milad, Harandi, Mehrtash, Seethaler, Rudolf, Milani, Abbas S.

    ISSN: 0951-192X, 1362-3052
    Vydavateľské údaje: Taylor & Francis 01.02.2024
    “…Data in advanced manufacturing are often sparse and collected from various sensory devices in a heterogeneous and multi-modal fashion…”
    Získať plný text
    Journal Article
  18. 18

    SDC-GAE: Structural Difference Compensation Graph Autoencoder for Unsupervised Multimodal Change Detection Autor Han, Te, Tang, Yuqi, Chen, Yuzeng, Yang, Xin, Guo, Yuqiang, Jiang, Shujing

    ISSN: 0196-2892, 1558-0644
    Vydavateľské údaje: New York IEEE 2024
    “… To address the reliance on labeled data and enhance the robustness of structural features in the existing methods, we propose a structure difference compensation graph autoencoder (SDC-GAE…”
    Získať plný text
    Journal Article
  19. 19

    Leveraging variant of CAE with sparse convolutional embedding and two-stage application-driven data augmentation for image clustering Autor Liu, Yanming, Liu, Jinglei

    ISSN: 1432-7643, 1433-7479
    Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2025
    Vydané v Soft computing (Berlin, Germany) (01.02.2025)
    “… To achieve this, we propose a variant of the convolutional autoencoder (CAE) called SCDAC, which incorporates sparse convolutional embedding and a two-stage application-driven data augmentation approach…”
    Získať plný text
    Journal Article
  20. 20

    K-Means Clustering Optimizing Deep Stacked Sparse Autoencoder Autor Bi, Yandong, Wang, Peng, Guo, Xuchao, Wang, Zhijun, Cheng, Shuhan

    ISSN: 1557-2064, 1557-2072
    Vydavateľské údaje: New York Springer US 01.12.2019
    Vydané v Sensing and imaging (01.12.2019)
    “… How to speed up training is a problem deserving of study. In order to accelerate training, K-means clustering optimizing deep stacked sparse autoencoder (K-means sparse SAE…”
    Získať plný text
    Journal Article