Suchergebnisse - sparse convolutional autoencoder (((same OR sage) OR cae))

Andere Suchmöglichkeiten:

  1. 1

    A Novel Convolutional Autoencoder-Based Clutter Removal Method for Buried Threat Detection in Ground-Penetrating Radar von Temlioglu, Eyyup, Erer, Isin

    ISSN: 0196-2892, 1558-0644
    Veröffentlicht: New York IEEE 2022
    “… A new clutter removal method based on convolutional autoencoders (CAEs) is introduced. The raw GPR image is encoded via successive convolution and pooling layers and then decoded to provide the clutter-free GPR image …”
    Volltext
    Journal Article
  2. 2

    Unsupervised Spatial-Spectral Feature Learning by 3D Convolutional Autoencoder for Hyperspectral Classification von Mei, Shaohui, Ji, Jingyu, Geng, Yunhao, Zhang, Zhi, Li, Xu, Du, Qian

    ISSN: 0196-2892, 1558-0644
    Veröffentlicht: New York IEEE 01.09.2019
    Veröffentlicht in IEEE transactions on geoscience and remote sensing (01.09.2019)
    “… ) convolutional autoencoder (3D-CAE). The proposed 3D-CAE consists of 3D or elementwise operations only, such as 3D convolution, 3D pooling, and 3D batch normalization, to maximally explore spatial-spectral structure information for feature extraction …”
    Volltext
    Journal Article
  3. 3

    Improving brain MRI denoising using convolutional AutoEncoder and sparse representations von Velayudham, A, Madhan Kumar, K., Krishna Priya, MS

    ISSN: 0957-4174
    Veröffentlicht: Elsevier Ltd 05.03.2025
    Veröffentlicht in Expert systems with applications (05.03.2025)
    “… However, noise often degrades image quality, leading to inaccurate diagnoses. To address this issue, a Convolutional AutoEncoder-based Orthogonal Matching Pursuit (CAE-OMP …”
    Volltext
    Journal Article
  4. 4

    Sparse autoencoder for unsupervised nucleus detection and representation in histopathology images von Hou, Le, Nguyen, Vu, Kanevsky, Ariel B., Samaras, Dimitris, Kurc, Tahsin M., Zhao, Tianhao, Gupta, Rajarsi R., Gao, Yi, Chen, Wenjin, Foran, David, Saltz, Joel H.

    ISSN: 0031-3203, 1873-5142
    Veröffentlicht: England Elsevier Ltd 01.02.2019
    Veröffentlicht in Pattern recognition (01.02.2019)
    “… We propose a sparse Convolutional Autoencoder (CAE) for simultaneous nucleus detection and feature extraction in histopathology tissue images …”
    Volltext
    Journal Article
  5. 5

    Multi-resolution reconstruction of longitudinal streambed footprints using embedded sparse convolutional autoencoders von Yang, Yifan, Tang, Zihao, Shao, Dong, Xu, Zhonghou

    ISSN: 0022-1694
    Veröffentlicht: Elsevier B.V 01.06.2025
    Veröffentlicht in Journal of hydrology (Amsterdam) (01.06.2025)
    “… This study introduces an embedded convolutional autoencoder (CAE) architecture designed for the multi-resolution reconstruction of longitudinal streambed footprints as sparse heatmaps …”
    Volltext
    Journal Article
  6. 6

    Unsupervised deep learning approach for network intrusion detection combining convolutional autoencoder and one-class SVM von Binbusayyis, Adel, Vaiyapuri, Thavavel

    ISSN: 0924-669X, 1573-7497
    Veröffentlicht: New York Springer US 01.10.2021
    Veröffentlicht in Applied intelligence (Dordrecht, Netherlands) (01.10.2021)
    “… With the rapid advancement in network technologies, the need for cybersecurity has gained increasing momentum in recent years. As a primary defense mechanism, …”
    Volltext
    Journal Article
  7. 7

    Enhanced fault detection in digital VLSI circuits using convolutional autoencoders von Savalam, Chandrasekhar, Medisetti, Sanjay, Korapati, Prasanti

    ISSN: 0167-9260
    Veröffentlicht: Elsevier B.V 01.03.2026
    Veröffentlicht in Integration (Amsterdam) (01.03.2026)
    “… A Convolutional Autoencoder (CAE) is employed to extract spatial and structural features from circuit test patterns, effectively reducing dimensionality while preserving fault-related information …”
    Volltext
    Journal Article
  8. 8

    Leveraging variant of CAE with sparse convolutional embedding and two-stage application-driven data augmentation for image clustering von Liu, Yanming, Liu, Jinglei

    ISSN: 1432-7643, 1433-7479
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2025
    Veröffentlicht in Soft computing (Berlin, Germany) (01.02.2025)
    “… To achieve this, we propose a variant of the convolutional autoencoder (CAE) called SCDAC, which incorporates sparse convolutional embedding and a two-stage application-driven data augmentation approach …”
    Volltext
    Journal Article
  9. 9

    Temperature scaling unmixing framework based on convolutional autoencoder von Xu, Jin, Xu, Mingming, Liu, Shanwei, Sheng, Hui, Yang, Zhiru

    ISSN: 1569-8432, 1872-826X
    Veröffentlicht: Elsevier B.V 01.05.2024
    “… •The framework is a new spatial level constraint method and can be transferred to other convolutional autoencoder-based methods …”
    Volltext
    Journal Article
  10. 10

    Deep Learning Augmented Data Assimilation: Reconstructing Missing Information with Convolutional Autoencoders von Wang, Yueya, Shi, Xiaoming, Lei, Lili, Fung, Jimmy Chi-Hung

    ISSN: 0027-0644, 1520-0493
    Veröffentlicht: Washington American Meteorological Society 01.08.2022
    Veröffentlicht in Monthly weather review (01.08.2022)
    “… By training a convolutional autoencoder (CAE) with a long simulation at a coarse “forecast” resolution (T63), we obtained a deep learning approximation …”
    Volltext
    Journal Article
  11. 11

    Representation learning via an integrated autoencoder for unsupervised domain adaptation von ZHU, Yi, WU, Xindong, QIANG, Jipeng, YUAN, Yunhao, LI, Yun

    ISSN: 2095-2228, 2095-2236
    Veröffentlicht: Beijing Higher Education Press 01.10.2023
    Veröffentlicht in Frontiers of Computer Science (01.10.2023)
    “… Recently, deep learning methods based on autoencoder have achieved sound performance in representation learning, and many dual or serial autoencoder-based methods take different characteristics …”
    Volltext
    Journal Article
  12. 12

    Constructing fine-granularity functional brain network atlases via deep convolutional autoencoder von Zhao, Yu, Dong, Qinglin, Chen, Hanbo, Iraji, Armin, Li, Yujie, Makkie, Milad, Kou, Zhifeng, Liu, Tianming

    ISSN: 1361-8415, 1361-8423, 1361-8423
    Veröffentlicht: Netherlands Elsevier B.V 01.12.2017
    Veröffentlicht in Medical image analysis (01.12.2017)
    “… •A new deep 3D convolutional autoencoder to model brain network maps.•Derived fine-granularity functional brain network atlases …”
    Volltext
    Journal Article
  13. 13

    Feature extraction of fields of fluid dynamics data using sparse convolutional autoencoder von Obayashi, Wataru, Aono, Hikaru, Tatsukawa, Tomoaki, Fujii, Kozo

    ISSN: 2158-3226, 2158-3226
    Veröffentlicht: Melville American Institute of Physics 01.10.2021
    Veröffentlicht in AIP advances (01.10.2021)
    “… The technique here is based on the convolutional and sparse autoencoder learning algorithms and is called sparse convolutional autoencoder …”
    Volltext
    Journal Article
  14. 14

    Deep hyperspectral clustering using attention-enhanced 3D-2D convolutional autoencoder for mineral mapping von Peyghambari, Sima, Zhang, Yun

    ISSN: 2352-9385, 2352-9385
    Veröffentlicht: Elsevier B.V 01.08.2025
    Veröffentlicht in Remote sensing applications (01.08.2025)
    “… However, the most commonly used 3D-convolutional autoencoder (3D-CAE) models have several disadvantages, including intensive computational costs and the potential to lose spatial information …”
    Volltext
    Journal Article
  15. 15

    Deep spectral unmixing framework via 3D denoising convolutional autoencoder von Jia, Peiyuan, Zhang, Miao, Shen, Yi

    ISSN: 1751-9659, 1751-9667
    Veröffentlicht: Wiley 01.05.2021
    Veröffentlicht in IET image processing (01.05.2021)
    “… ‐based framework for unmixing problem. It contains two parts: a three‐dimensional convolutional autoencoder for hyperspectral denoising (denoising 3D CAE …”
    Volltext
    Journal Article
  16. 16

    Intelligent Fault Diagnosis Method for Blade Damage of Quad-Rotor UAV Based on Stacked Pruning Sparse Denoising Autoencoder and Convolutional Neural Network von Yang, Pu, Wen, Chenwan, Geng, Huilin, Liu, Peng

    ISSN: 2075-1702, 2075-1702
    Veröffentlicht: Basel MDPI AG 01.12.2021
    Veröffentlicht in Machines (Basel) (01.12.2021)
    “… This paper introduces a new intelligent fault diagnosis method based on stack pruning sparse denoising autoencoder and convolutional neural network (sPSDAE-CNN …”
    Volltext
    Journal Article
  17. 17

    Out-of-Roundness Wheel Damage Identification in Railway Vehicles Using AutoEncoder Models von Melo, Renato, Finotti, Rafaelle, Guedes, António, Gonçalves, Vítor, Meixedo, Andreia, Ribeiro, Diogo, Barbosa, Flávio, Cury, Alexandre

    ISSN: 2076-3417, 2076-3417
    Veröffentlicht: Basel MDPI AG 01.03.2025
    Veröffentlicht in Applied sciences (01.03.2025)
    “… ), Sparse AutoEncoder (SAE), and Convolutional AutoEncoder (CAE)—to detect and quantify structural anomalies in railway vehicle wheels, such as polygonization …”
    Volltext
    Journal Article
  18. 18

    Structural Damage Identification Using Autoencoders: A Comparative Study von Spínola Neto, Marcos, Finotti, Rafaelle, Barbosa, Flávio, Cury, Alexandre

    ISSN: 2075-5309, 2075-5309
    Veröffentlicht: Basel MDPI AG 01.07.2024
    Veröffentlicht in Buildings (Basel) (01.07.2024)
    “… Autoencoders, as unsupervised learning models, offer promise for SHM by learning data features and reducing dimensionality …”
    Volltext
    Journal Article
  19. 19

    Deep learning for pixel-level image fusion: Recent advances and future prospects von Liu, Yu, Chen, Xun, Wang, Zengfu, Wang, Z. Jane, Ward, Rabab K., Wang, Xuesong

    ISSN: 1566-2535, 1872-6305
    Veröffentlicht: Elsevier B.V 01.07.2018
    Veröffentlicht in Information fusion (01.07.2018)
    “… By integrating the information contained in multiple images of the same scene into one composite image, pixel-level image fusion is recognized as having high significance in a variety of fields …”
    Volltext
    Journal Article
  20. 20

    The effect of whitening transformation on pooling operations in convolutional autoencoders von Li, Zuhe, Fan, Yangyu, Liu, Weihua

    ISSN: 1687-6180, 1687-6172, 1687-6180
    Veröffentlicht: Cham Springer International Publishing 14.04.2015
    Veröffentlicht in EURASIP journal on advances in signal processing (14.04.2015)
    “… Convolutional autoencoders (CAEs) are unsupervised feature extractors for high-resolution images …”
    Volltext
    Journal Article