Suchergebnisse - reduced deep conventional stack autoencoder
-
1
Precise single step and multistep short-term photovoltaic parameters forecasting based on reduced deep convolutional stack autoencoder and minimum variance multikernel random vector functional network
ISSN: 0952-1976Veröffentlicht: Elsevier Ltd 01.10.2024Veröffentlicht in Engineering applications of artificial intelligence (01.10.2024)“… To address this, we have developed a novel hybrid model: a reduced deep convolutional stack autoencoder with a minimum variance multikernel random vector functional link network (RDCSAE-MVMRVFLN …”
Volltext
Journal Article -
2
Post-stack seismic impedance inversion based on sparse-coded Mamba seismic model
ISSN: 1474-7065Veröffentlicht: Elsevier Ltd 01.11.2025Veröffentlicht in Physics and chemistry of the earth. Parts A/B/C (01.11.2025)“… Post-stack seismic impedance inversion plays a vital role in reservoir characterization and seismic attribute analysis, enabling the interpretation of lithological properties and the prediction …”
Volltext
Journal Article