Výsledky vyhľadávania - novel stack deep convolutional autoencoder~

  • Zobrazené výsledky 1 - 12 z 12
Upresniť hľadanie
  1. 1

    SDCA: a novel stack deep convolutional autoencoder – an application on retinal image denoising Autor Ghosh, Swarup Kr, Biswas, Biswajit, Ghosh, Anupam

    ISSN: 1751-9659, 1751-9667
    Vydavateľské údaje: The Institution of Engineering and Technology 12.12.2019
    Vydané v IET image processing (12.12.2019)
    “… This study represents a deep learning based approach to denoising images and restoring features using stack denoising convolutional autoencoder…”
    Získať plný text
    Journal Article
  2. 2

    Precise single step and multistep short-term photovoltaic parameters forecasting based on reduced deep convolutional stack autoencoder and minimum variance multikernel random vector functional network Autor Sahani, Mrutyunjaya, Choudhury, Sasmita, Siddique, Marif Daula, Parida, Tanmoy, Dash, Pradipta Kishore, Panda, Sanjib Kumar

    ISSN: 0952-1976
    Vydavateľské údaje: Elsevier Ltd 01.10.2024
    “… To address this, we have developed a novel hybrid model: a reduced deep convolutional stack autoencoder with a minimum variance multikernel random vector functional link network (RDCSAE-MVMRVFLN…”
    Získať plný text
    Journal Article
  3. 3

    Deep Convolutional Stack Autoencoder of Process Adaptive VMD Data With Robust Multikernel RVFLN for Power Quality Events Recognition Autor Sahani, Mrutyunjaya, Dash, Pradipta Kishore

    ISSN: 0018-9456, 1557-9662
    Vydavateľské údaje: New York IEEE 2021
    “…). A novel reduced deep convolutional neural network (RDCNN) embedded with stack autoencoder, that is, RDCSAE structure is introduced to extract the most discriminative…”
    Získať plný text
    Journal Article
  4. 4

    Epileptic Seizure Recognition Using Reduced Deep Convolutional Stack Autoencoder and Improved Kernel RVFLN From EEG Signals Autor Sahani, Mrutyunjaya, Rout, Susanta Kumar, Dash, Pradipta Kishor

    ISSN: 1932-4545, 1940-9990, 1940-9990
    Vydavateľské údaje: New York IEEE 01.06.2021
    “…In this paper, reduced deep convolutional stack autoencoder (RDCSAE) and improved kernel random vector functional link network (IKRVFLN…”
    Získať plný text
    Journal Article
  5. 5

    BrainNet: a fusion assisted novel optimal framework of residual blocks and stacked autoencoders for multimodal brain tumor classification Autor Ullah, Muhammad Sami, Khan, Muhammad Attique, Almujally, Nouf Abdullah, Alhaisoni, Majed, Akram, Tallha, Shabaz, Mohammad

    ISSN: 2045-2322, 2045-2322
    Vydavateľské údaje: London Nature Publishing Group UK 11.03.2024
    Vydané v Scientific reports (11.03.2024)
    “… However, a few important challenges arise, such as (i) the selection of the most important deep learning architecture for classification (ii…”
    Získať plný text
    Journal Article
  6. 6

    SDCAE: Stack Denoising Convolutional Autoencoder Model for Accident Risk Prediction Via Traffic Big Data Autor Chen, Chao, Fan, Xiaoliang, Zheng, Chuanpan, Xiao, Lujing, Cheng, Ming, Wang, Cheng

    Vydavateľské údaje: IEEE 01.08.2018
    “… However, predicting the risk of citywide accidents remains an open issue. To address this problem, we propose SDCAE, a novel Stack Denoise Convolutional Auto-Encoder algorithm to predict the risk of traffic accident in the city-level…”
    Získať plný text
    Konferenčný príspevok..
  7. 7

    Multilayer Fisher extreme learning machine for classification Autor Lai, Jie, Wang, Xiaodan, Xiang, Qian, Wang, Jian, Lei, Lei

    ISSN: 2199-4536, 2198-6053
    Vydavateľské údaje: Cham Springer International Publishing 01.04.2023
    Vydané v Complex & intelligent systems (01.04.2023)
    “… To address this problem, a novel Fisher extreme learning machine autoencoder (FELM-AE) is proposed and is used as the component for the multilayer Fisher extreme leaning machine (ML-FELM…”
    Získať plný text
    Journal Article
  8. 8

    Parametric Learning of Texture Filters by Stacked Fisher Autoencoders Autor Shahriari, Arash

    Vydavateľské údaje: IEEE 01.11.2016
    “… The Fisher autoencoders are independently computed in stacks of variable depth based on the complexity of patterns under study and the ability of each individual filter to extract deep features…”
    Získať plný text
    Konferenčný príspevok..
  9. 9

    Deep Decoupling Convolutional Neural Network for Intelligent Compound Fault Diagnosis Autor Huang, Ruyi, Liao, Yixiao, Zhang, Shaohui, Li, Weihua

    ISSN: 2169-3536, 2169-3536
    Vydavateľské údaje: Piscataway IEEE 2019
    Vydané v IEEE access (2019)
    “… To solve such a problem, a novel method called deep decoupling convolutional neural network is proposed for intelligent compound fault diagnosis…”
    Získať plný text
    Journal Article
  10. 10

    Deep Neural Networks for In Situ Hybridization Grid Completion and Clustering Autor Li, Yujie, Huang, Heng, Chen, Hanbo, Liu, Tianming

    ISSN: 1545-5963, 1557-9964, 1557-9964
    Vydavateľské údaje: United States IEEE 01.03.2020
    “… As we stack multiple RBMs to form a deep belief network (DBN), we progressively…”
    Získať plný text
    Journal Article
  11. 11

    Deep Learning-Based Assessment of ILD Designs in HRCT Pictures Autor A, Balamanikandan, M, Sukanya, M, Dhanalakshmi, M, Vimala, N, Arul, Yatm, Narayana Reddy

    Vydavateľské údaje: IEEE 28.08.2024
    “… Several parts make up the model, including a fully convolutional network, a sparse stack autoencoder and decoder, an edge depth CNN, and a dilated convolution. The proposed model's performance is also contrasted with those of other models that are currently in use, including ResNet50, VGG16, and VGG19…”
    Získať plný text
    Konferenčný príspevok..
  12. 12

    Deep Learning Frameworks with Applications in Medical Signal and Image Classification Autor Jia, Guangyu

    Vydavateľské údaje: ProQuest Dissertations & Theses 01.01.2021
    “… The main contributions of this research include: 1) proposing novel deep learning architectures which can improve the classification performance, generalisation ability…”
    Získať plný text
    Dissertation