Suchergebnisse - noise clustering algorithm

  1. 1

    Keypoints based enhanced multiple copy-move forgeries detection system using density-based spatial clustering of application with noise clustering algorithm von Soni, Badal, Das, Pradip K, Thounaojam, Dalton Meitei

    ISSN: 1751-9659, 1751-9667
    Veröffentlicht: The Institution of Engineering and Technology 01.11.2018
    Veröffentlicht in IET image processing (01.11.2018)
    “… ) features extraction and density-based clustering algorithm. The extracted SIFT features are matched using the generalised two nearest neighbours (2NN) procedure …”
    Volltext
    Journal Article
  2. 2

    Rapid determination of lambda-cyhalothrin residues on Chinese cabbage based on MIR spectroscopy and a Gustafson-Kessel noise clustering algorithm von Zheng, Jun, Gong, Zhe, Yin, Shaojie, Wang, Wei, Wang, Meng, Lin, Peng, Zhou, Haoxiang, Yang, Yangjian

    ISSN: 2046-2069, 2046-2069
    Veröffentlicht: Cambridge Royal Society of Chemistry 23.06.2022
    Veröffentlicht in RSC advances (23.06.2022)
    “… In order to quickly, non-destructively and effectively qualitatively analyze lambda-cyhalothrin residues on Chinese cabbage, a method involving a Gustafson-Kessel noise clustering (GKNC …”
    Volltext
    Journal Article
  3. 3

    Research on multi-label classification method of transformer based on DBSCAN (Density-Based Spatial Clustering of Applications with Noise) clustering algorithm von Wang, MingYu, Cheng, Rui

    ISSN: 1742-6588, 1742-6596
    Veröffentlicht: IOP Publishing 01.12.2021
    Veröffentlicht in Journal of physics. Conference series (01.12.2021)
    “… With the improvement of the intelligent level of power grid and the enhancement of the integrated characteristics of power grid, the degree of discretization …”
    Volltext
    Journal Article
  4. 4

    Improved Density Based Spatial Clustering of Applications of Noise Clustering Algorithm for Knowledge Discovery in Spatial Data von Sharma, Arvind, Tiwari, Akhilesh, Gupta, R. K.

    ISSN: 1024-123X, 1563-5147
    Veröffentlicht: Cairo, Egypt Hindawi Limiteds 01.01.2016
    Veröffentlicht in Mathematical Problems in Engineering (01.01.2016)
    “… There are many techniques available in the field of data mining and its subfield spatial data mining is to understand relationships between data objects. Data …”
    Volltext
    Journal Article
  5. 5

    LANDMARC indoor positioning algorithm based on density-based spatial clustering of applications with noise–genetic algorithm–radial basis function neural network von Ren, Jingqiu, Bao, Ke, Zhang, Guanghua, Chu, Li, Lu, Weidang

    ISSN: 1550-1329, 1550-1477, 1550-1477
    Veröffentlicht: London, England SAGE Publications 01.02.2020
    “… algorithm based on density-based spatial clustering of applications with noise–genetic algorithm–radial basis function neural network is proposed …”
    Volltext
    Journal Article
  6. 6

    A Complexity Survey on Density based Spatial Clustering of Applications of Noise Clustering Algorithms von Hassan, Boulchahoub, Zineb, Rachiq, Amine, Labriji, Elhoussine, Labriji

    ISSN: 2158-107X, 2156-5570
    Veröffentlicht: West Yorkshire Science and Information (SAI) Organization Limited 2021
    “… Up to now, many algorithms were developed for clustering using several techniques including centroids, density and dendrograms approaches …”
    Volltext
    Journal Article
  7. 7

    Classification of Subgroups of Solar and Heliospheric Observatory (SOHO) Sungrazing Kreutz Comet Group by the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Algorithm von Karimova, Ulkar, Yi, Yu

    ISSN: 2093-5587, 2093-1409
    Veröffentlicht: The Korean Space Science Society 01.03.2024
    Veröffentlicht in Journal of astronomy and space sciences (01.03.2024)
    “… In this study, we introduce an automated classification technique using the density-based spatial clustering of applications with noise (DBSCAN …”
    Volltext
    Journal Article
  8. 8

    A Fuzzy Identification Method Based on the Likelihood Function and Noise Clustering Algorithm von Tsai, Shun-Hung, Chen, Yi-Ting

    ISSN: 1562-2479, 2199-3211
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2023
    Veröffentlicht in International journal of fuzzy systems (01.02.2023)
    “… In this paper, based on the modified fuzzy c-regression model and noise clustering algorithm, a fuzzy identification method is proposed …”
    Volltext
    Journal Article
  9. 9

    Classification of Subgroups of Solar and Heliospheric Observatory (SOHO) Sungrazing Kreutz Comet Group by the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Algorithm von Ulkar Karimova, Yu Yi

    ISSN: 2093-5587, 2093-1409
    Veröffentlicht: 2024
    Veröffentlicht in Journal of astronomy and space sciences (2024)
    “… In this study, we introduce an automated classification technique using the densitybased spatial clustering of applications with noise (DBSCAN …”
    Volltext
    Journal Article
  10. 10

    A Novel K-Means Clustering Algorithm with a Noise Algorithm for Capturing Urban Hotspots von Ran, Xiaojuan, Zhou, Xiangbing, Lei, Mu, Tepsan, Worawit, Deng, Wu

    ISSN: 2076-3417, 2076-3417
    Veröffentlicht: Basel MDPI AG 01.12.2021
    Veröffentlicht in Applied sciences (01.12.2021)
    “… In order to solve these problems, a novel K-means clustering algorithm based on a noise algorithm is developed …”
    Volltext
    Journal Article
  11. 11

    Effective FCM noise clustering algorithms in medical images von Kannan, S.R, Devi, R, Ramathilagam, S, Takezawa, K

    ISSN: 0010-4825, 1879-0534, 1879-0534
    Veröffentlicht: United States Elsevier Ltd 01.02.2013
    Veröffentlicht in Computers in biology and medicine (01.02.2013)
    “… -Euclidean structures in data to enhance the robustness of the original clustering algorithms to reduce noise and outliers …”
    Volltext
    Journal Article
  12. 12

    A mixed data clustering algorithm with noise-filtered distribution centroid and iterative weight adjustment strategy von Li, Xiangjun, Wu, Zijie, Zhao, Zhibin, Ding, Feng, He, Daojing

    ISSN: 0020-0255, 1872-6291
    Veröffentlicht: Elsevier Inc 01.10.2021
    Veröffentlicht in Information sciences (01.10.2021)
    “… Cluster analysis for mixed data remains challenging. This paper proposes a mixed data clustering algorithm with noise-filtered distribution centroid and iterative weight adjustment strategy …”
    Volltext
    Journal Article
  13. 13

    Adaptive gravitational clustering algorithm integrated with noise detection von Yang, Juntao, Yang, Lijun, Wang, Wentong, Liu, Tao, Tang, Dongming

    ISSN: 0957-4174
    Veröffentlicht: Elsevier Ltd 05.03.2025
    Veröffentlicht in Expert systems with applications (05.03.2025)
    “… To address these limitations, we propose an Adaptive Gravitational Clustering Algorithm Integrated with Noise Detection called GCIND …”
    Volltext
    Journal Article
  14. 14

    A local-density based spatial clustering algorithm with noise von Duan, Lian, Xu, Lida, Guo, Feng, Lee, Jun, Yan, Baopin

    ISSN: 0306-4379, 1873-6076
    Veröffentlicht: Elsevier Ltd 01.11.2007
    Veröffentlicht in Information systems (Oxford) (01.11.2007)
    “… Density-based clustering algorithms are attractive for the task of class identification in spatial database …”
    Volltext
    Journal Article
  15. 15

    Noise-resistant fuzzy clustering algorithm von Askari, S.

    ISSN: 2364-4966, 2364-4974
    Veröffentlicht: Cham Springer International Publishing 01.10.2021
    Veröffentlicht in Granular computing (Internet) (01.10.2021)
    “… However, noise and outliers affect the performance of the algorithm that results in misplaced cluster centers …”
    Volltext
    Journal Article
  16. 16

    Adaptive sparse regularized fuzzy clustering noise image segmentation algorithm based on complementary spatial information von Wu, Jiaxin, Wang, Xiaopeng, Liu, Yangyang, Fang, Chao

    ISSN: 0957-4174
    Veröffentlicht: Elsevier Ltd 05.12.2024
    Veröffentlicht in Expert systems with applications (05.12.2024)
    “… The Fuzzy C-means clustering (FCM) algorithm has gained prominence as a widely utilized technique for data partitioning and image segmentation in various applications …”
    Volltext
    Journal Article
  17. 17

    Machine Well Screening Method Based on POI Data and DBSCAN Clustering Algorithm von Gan, Xing, Fan, Haiyan, Yang, Moyuan, Tang, Fangfang, Liu, Honglu, Ma, Zhijun

    ISSN: 1545-598X, 1558-0571
    Veröffentlicht: Piscataway IEEE 2025
    Veröffentlicht in IEEE geoscience and remote sensing letters (2025)
    “… In keeping with the need for effective groundwater management, this study introduces a screening process leveraging the Density-Based Spatial Clustering of Applications with Noise (DBSCAN …”
    Volltext
    Journal Article
  18. 18

    Noise robust intuitionistic fuzzy c‐means clustering algorithm incorporating local information von Yang, Zhenzhen, Xu, Pengfei, Yang, Yongpeng, Kang, Bin

    ISSN: 1751-9659, 1751-9667
    Veröffentlicht: Wiley 01.02.2021
    Veröffentlicht in IET image processing (01.02.2021)
    “… In this paper, we propose a noise robust intuitionistic fuzzy c‐means (NR‐IFCM) algorithm, which can handle …”
    Volltext
    Journal Article
  19. 19

    A hierarchical clustering algorithm based on noise removal von Cheng, Dongdong, Zhu, Qingsheng, Huang, Jinlong, Wu, Quanwang, Yang, Lijun

    ISSN: 1868-8071, 1868-808X
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2019
    “… Noise is irrelevant or meaningless data and hinders most types of data analysis. The existing clustering algorithms seldom take the noise points into consideration and cannot detect arbitrary-shaped clusters …”
    Volltext
    Journal Article
  20. 20

    A robust entropy regularized K-means clustering algorithm for processing noise in datasets von Jiang, Peilin, Cao, Junnan, Yu, Weizhong, Nie, Feiping

    ISSN: 0941-0643, 1433-3058
    Veröffentlicht: London Springer London 01.03.2025
    Veröffentlicht in Neural computing & applications (01.03.2025)
    “… K-means is one of the clustering algorithms. Due to its simple implementation and powerful functionality, it is widely used in fields such as data mining, cluster analysis, data preprocessing, and unsupervised learning …”
    Volltext
    Journal Article