Suchergebnisse - multiplication stochastic gradient algorithm

  1. 1

    An adaptive Hessian approximated stochastic gradient MCMC method von Wang, Yating, Deng, Wei, Lin, Guang

    ISSN: 0021-9991, 1090-2716
    Veröffentlicht: Cambridge Elsevier Inc 01.05.2021
    Veröffentlicht in Journal of computational physics (01.05.2021)
    “… One popular family is stochastic gradient Markov chain Monte Carlo methods (SG-MCMC), which have gained increasing interest due to their ability to handle large datasets and the potential to avoid overfitting …”
    Volltext
    Journal Article
  2. 2

    Low-Complexity Feature Stochastic Gradient Algorithm for Block-Lowpass Systems von Yazdanpanah, Hamed, Diniz, Paulo S. R., Lima, Markus V. S.

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: Piscataway IEEE 2019
    Veröffentlicht in IEEE access (2019)
    “… it. By means of the so-called feature function, we propose the low-complexity feature stochastic gradient (LF-SG …”
    Volltext
    Journal Article
  3. 3

    An adaptive Hessian approximated stochastic gradient MCMC method von Wang, Yating, Deng, Wei, Lin, Guang

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 03.10.2020
    Veröffentlicht in arXiv.org (03.10.2020)
    “… One popular family is stochastic gradient Markov chain Monte Carlo methods (SG-MCMC), which have gained increasing interest due to their scalability to handle large datasets and the ability to avoid overfitting …”
    Volltext
    Paper
  4. 4

    FAST: DNN Training Under Variable Precision Block Floating Point with Stochastic Rounding von Qian Zhang, Sai, McDanel, Bradley, Kung, H. T.

    ISSN: 2378-203X
    Veröffentlicht: IEEE 01.04.2022
    “… In this paper, we propose a Fast First, Accurate Second Training (FAST) system for DNNs, where the weights, activations, and gradients are represented in BFP …”
    Volltext
    Tagungsbericht
  5. 5

    Hardware‐Friendly Stochastic and Adaptive Learning in Memristor Convolutional Neural Networks von Zhang, Wei, Pan, Lunshuai, Yan, Xuelong, Zhao, Guangchao, Chen, Hong, Wang, Xingli, Tay, Beng Kang, Zhong, Gaokuo, Li, Jiangyu, Huang, Mingqiang

    ISSN: 2640-4567, 2640-4567
    Veröffentlicht: Weinheim John Wiley & Sons, Inc 01.09.2021
    Veröffentlicht in Advanced intelligent systems (01.09.2021)
    “… In addition, compared with the traditional nonlinear stochastic gradient descent (SGD) updating algorithm or the piecewise linear …”
    Volltext
    Journal Article
  6. 6

    Gradient Descent Using Stochastic Circuits for Efficient Training of Learning Machines von Liu, Siting, Jiang, Honglan, Liu, Leibo, Han, Jie

    ISSN: 0278-0070, 1937-4151
    Veröffentlicht: New York IEEE 01.11.2018
    “… ) and one stochastic integrator are, respectively, used to implement the multiplications and accumulations in a GD algorithm …”
    Volltext
    Journal Article
  7. 7

    Data Encoding for Byzantine-Resilient Distributed Optimization von Data, Deepesh, Song, Linqi, Diggavi, Suhas N.

    ISSN: 0018-9448, 1557-9654
    Veröffentlicht: New York IEEE 01.02.2021
    Veröffentlicht in IEEE transactions on information theory (01.02.2021)
    “… : Proximal Gradient Descent (PGD) and Coordinate Descent (CD). Gradient descent (GD) is a special case of these algorithms …”
    Volltext
    Journal Article
  8. 8

    Energy-Efficient LSTM Networks for Online Learning von Ergen, Tolga, Mirza, Ali H., Kozat, Suleyman Serdar

    ISSN: 2162-237X, 2162-2388, 2162-2388
    Veröffentlicht: Piscataway IEEE 01.08.2020
    “… We then introduce online training algorithms based on the stochastic …”
    Volltext
    Journal Article
  9. 9

    A Novel Weld-Seam Defect Detection Algorithm Based on the S-YOLO Model von Zhang, Yi, Ni, Qingjian

    ISSN: 2075-1680, 2075-1680
    Veröffentlicht: Basel MDPI AG 01.07.2023
    Veröffentlicht in Axioms (01.07.2023)
    “… NAM computes the channel-wise and spatial-wise attention weights by matrix multiplications and element-wise operations, and then applies them to the feature maps …”
    Volltext
    Journal Article
  10. 10

    An adaptive Hessian approximated stochastic gradient MCMC method von Wang, Yating, Deng, Wei, Lin, Guang

    ISSN: 0021-9991, 1090-2716
    Veröffentlicht: United States Elsevier 04.02.2021
    Veröffentlicht in Journal of computational physics (04.02.2021)
    “… One popular family is stochastic gradient Markov chain Monte Carlo methods (SG-MCMC), which have gained increasing interest due to their ability to handle large datasets and the potential to avoid overfitting …”
    Volltext
    Journal Article
  11. 11

    Stochastic Gradient Made Stable: A Manifold Propagation Approach for Large-Scale Optimization von Mu, Yadong, Liu, Wei, Liu, Xiaobai, Fan, Wei

    ISSN: 1041-4347, 1558-2191
    Veröffentlicht: New York IEEE 01.02.2017
    Veröffentlicht in IEEE transactions on knowledge and data engineering (01.02.2017)
    “… To improve the stability of stochastic gradient, recent years have witnessed the proposal of several semi-stochastic gradient descent algorithms, which distinguish themselves from standard SGD …”
    Volltext
    Journal Article
  12. 12

    A stochastic learning algorithm for neuromemristive systems von Merkel, Cory, Kudithipudi, Dhireesha

    ISSN: 2164-1676
    Veröffentlicht: IEEE 01.09.2014
    “… Existing algorithms are based on gradient descent techniques, which require analog multiplications …”
    Volltext
    Tagungsbericht
  13. 13

    On the Use of Stochastic Hessian Information in Optimization Methods for Machine Learning von Byrd, Richard H., Chin, Gillian M., Neveitt, Will, Nocedal, Jorge

    ISSN: 1052-6234, 1095-7189
    Veröffentlicht: Philadelphia Society for Industrial and Applied Mathematics 01.07.2011
    Veröffentlicht in SIAM journal on optimization (01.07.2011)
    “… We follow a batch approach, also known in the stochastic optimization literature as a sample average approximation approach …”
    Volltext
    Journal Article
  14. 14

    The Backpropagation algorithm for a math student von Damadi, Saeed, Moharrer, Golnaz, Cham, Mostafa, Shen, Jinglai

    ISSN: 2161-4407
    Veröffentlicht: IEEE 18.06.2023
    “… The Backpropagation (BP) algorithm leverages the composite structure of the DNN to efficiently compute the gradient …”
    Volltext
    Tagungsbericht
  15. 15

    A new constrained optimization model for solving the nonsymmetric stochastic inverse eigenvalue problem von Steidl, Gabriele, Winkler, Maximilian

    ISSN: 0308-1087, 1563-5139
    Veröffentlicht: Abingdon Taylor & Francis 12.12.2022
    Veröffentlicht in Linear & multilinear algebra (12.12.2022)
    “… Recently, Zhao et al. [A geometric nonlinear conjugate gradient method for stochastic inverse eigenvalue problems. SIAM J Numer Anal. 2016;54(4):2015-2035 …”
    Volltext
    Journal Article
  16. 16

    (\ell_1\) Regression using Lewis Weights Preconditioning and Stochastic Gradient Descent von Durfee, David, Lai, Kevin A, Sawlani, Saurabh

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 31.05.2018
    Veröffentlicht in arXiv.org (31.05.2018)
    “… We present preconditioned stochastic gradient descent (SGD) algorithms for the \(\ell_1\) minimization problem …”
    Volltext
    Paper
  17. 17

    Stochastic Matrix-Free Equilibration von Diamond, Steven, Boyd, Stephen

    ISSN: 0022-3239, 1573-2878
    Veröffentlicht: New York Springer US 01.02.2017
    Veröffentlicht in Journal of optimization theory and applications (01.02.2017)
    “… Our method is based on convex optimization and projected stochastic gradient descent, using an unbiased estimate of a gradient obtained by a randomized method …”
    Volltext
    Journal Article
  18. 18

    Trust-region algorithms for training responses: machine learning methods using indefinite Hessian approximations von Erway, Jennifer B., Griffin, Joshua, Marcia, Roummel F., Omheni, Riadh

    ISSN: 1055-6788, 1029-4937
    Veröffentlicht: Abingdon Taylor & Francis 03.05.2020
    Veröffentlicht in Optimization methods & software (03.05.2020)
    “… Methods for solving ML problems based on stochastic gradient descent are easily scaled for very large problems but may involve fine-tuning many hyper-parameters …”
    Volltext
    Journal Article
  19. 19

    Digitally Adaptive High-Fidelity Analog Array Signal Processing Resilient to Capacitive Multiplying DAC Inter-Stage Gain Error von Joshi, Siddharth, Kim, Chul, Thomas, Chris M., Cauwenberghs, Gert

    ISSN: 1549-8328, 1558-0806
    Veröffentlicht: New York IEEE 01.11.2019
    “… S 2 A offers a direct alternative to stochastic gradient descent overcoming several of its shortcomings, such as its sensitivity to model error, while improving on the rate and quality of convergence …”
    Volltext
    Journal Article
  20. 20

    LM-CMA: An Alternative to L-BFGS for Large-Scale Black Box Optimization von Loshchilov, Ilya

    ISSN: 1530-9304, 1530-9304
    Veröffentlicht: United States 01.03.2017
    Veröffentlicht in Evolutionary computation (01.03.2017)
    “… ) proposed by Loshchilov ( 2014 ). LM-CMA is a stochastic derivative-free algorithm for numerical optimization of nonlinear, nonconvex …”
    Weitere Angaben
    Journal Article