Suchergebnisse - machinery learning matrix factorization algorithm~
Andere Suchmöglichkeiten:
- machinery learning matrix factorization algorithm »
-
1
Separation and Extraction of Compound-Fault Signal Based on Multi-Constraint Non-Negative Matrix Factorization
ISSN: 1099-4300, 1099-4300Veröffentlicht: Switzerland MDPI AG 01.07.2024Veröffentlicht in Entropy (Basel, Switzerland) (01.07.2024)“… To solve the separation of multi-source signals and detect their features from a single channel, a signal separation method using multi-constraint non-negative matrix factorization (NMF) is proposed …”
Volltext
Journal Article -
2
A Novel Signal Separation Method Based on Improved Sparse Non-Negative Matrix Factorization
ISSN: 1099-4300, 1099-4300Veröffentlicht: Basel MDPI AG 28.04.2019Veröffentlicht in Entropy (Basel, Switzerland) (28.04.2019)“… In order to separate and extract compound fault features of a vibration signal from a single channel, a novel signal separation method is proposed based on improved sparse non-negative matrix factorization (SNMF …”
Volltext
Journal Article -
3
IBL-AE: An interpretable base learning autoencoder for intelligent fault diagnosis of rotating machinery
ISSN: 0950-7051Veröffentlicht: Elsevier B.V 25.11.2025Veröffentlicht in Knowledge-based systems (25.11.2025)“… IBL-AE incorporates a non-negative decomposition module inspired by non-negative matrix factorization (NMF …”
Volltext
Journal Article -
4
The matrix ridge approximation: algorithms and applications
ISSN: 0885-6125, 1573-0565Veröffentlicht: New York Springer US 01.12.2014Veröffentlicht in Machine learning (01.12.2014)“… We are concerned with an approximation problem for a symmetric positive semidefinite matrix due to motivation from a class of nonlinear machine learning methods …”
Volltext
Journal Article -
5
Novel indicators for monitoring bearing condition using frequency-domain dictionary learning
ISSN: 0268-3768, 1433-3015Veröffentlicht: London Springer London 01.10.2025Veröffentlicht in International journal of advanced manufacturing technology (01.10.2025)“… The differences between the log-spectra of past segments and the current segment are stored as the columns of a matrix, which is factorized using dictionary learning (DL …”
Volltext
Journal Article -
6
ISLU: Indexing-Efficient Sparse LU Factorization for Circuit Simulation on GPUs (Invited Paper)
ISSN: 1558-2434Veröffentlicht: ACM 27.10.2024Veröffentlicht in Digest of technical papers - IEEE/ACM International Conference on Computer-Aided Design (27.10.2024)“… Conventional LU factorization methods generally involve two approaches: either they utilize space-intensive dense matrices for direct index-to-data mapping, or they inefficiently scour through indices to locate the positions of updated data elements …”
Volltext
Tagungsbericht -
7
MatFactory: A Framework for High-Performance Matrix Factorization on FPGAs
ISSN: 1558-2434Veröffentlicht: ACM 27.10.2024Veröffentlicht in Digest of technical papers - IEEE/ACM International Conference on Computer-Aided Design (27.10.2024)“… Matrix factorization is a widely used powerful tool in signal processing, machine learning and high performance computing …”
Volltext
Tagungsbericht -
8
Non-negative EMD manifold for feature extraction in machinery fault diagnosis
ISSN: 0263-2241, 1873-412XVeröffentlicht: Elsevier Ltd 01.06.2015Veröffentlicht in Measurement : journal of the International Measurement Confederation (01.06.2015)“… The first step employs non-negative matrix factorization (NMF) on IMFs selected by correlation analysis, and then extracts NNE features by optimization algorithms …”
Volltext
Journal Article -
9
Community detection in social network with pairwisely constrained symmetric non-negative matrix factorization
Veröffentlicht: ACM 25.08.2015Veröffentlicht in 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) (25.08.2015)“… Non-negative Matrix Factorization (NMF) aims to find two non-negative matrices whose product approximates the original matrix well, and is widely used in clustering condition with good physical interpretability and universal applicability …”
Volltext
Tagungsbericht -
10
Spatiotemporal non-negative projected convolutional network with bidirectional NMF and 3DCNN for remaining useful life estimation of bearings
ISSN: 0925-2312, 1872-8286Veröffentlicht: Elsevier B.V 25.08.2021Veröffentlicht in Neurocomputing (Amsterdam) (25.08.2021)“… •The proposed BiNMF algorithm can strongly support the efficient operation of the TFR-based prognostics models …”
Volltext
Journal Article -
11
Rolling Bearing Fault Diagnosis Method Based on Multisynchrosqueezing S Transform and Faster Dictionary Learning
ISSN: 1070-9622, 1875-9203Veröffentlicht: Cairo Hindawi 2021Veröffentlicht in Shock and vibration (2021)“… Finally, nonnegative matrix factorization (NMF) with only one hyperparameter and nonnegative linear equation are used to solve the dictionary learning and feature coding, respectively …”
Volltext
Journal Article -
12
Inference for Ever-Changing Policy of Taint Analysis
ISSN: 2832-7659Veröffentlicht: ACM 14.04.2024Veröffentlicht in IEEE/ACM International Conference on Software Engineering: Software Engineering in Practice (Online) (14.04.2024)“… Identifying correct and complete taint specifications is critical for detecting vulnerabilities in the ever-changing landscape of software security, and an …”
Volltext
Tagungsbericht -
13
Target Gene Prediction of Transcription Factor Using a New Neighborhood-regularized Tri-factorization One-class Collaborative Filtering Algorithm
Veröffentlicht: United States 15.08.2018Veröffentlicht in ACM-BCB ... ... : the ... ACM Conference on Bioinformatics, Computational Biology and Biomedicine. ACM Conference on Bioinformatics, Computational Biology and Biomedicine (15.08.2018)“… Here, we developed a new one-class collaborative filtering algorithm tREMAP that is based on regularized, weighted nonnegative matrix tri-factorization …”
Weitere Angaben
Journal Article -
14
Low-Rank Sinkhorn Factorization
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 08.03.2021Veröffentlicht in arXiv.org (08.03.2021)“… Several recent applications of optimal transport (OT) theory to machine learning have relied on regularization, notably entropy and the Sinkhorn algorithm …”
Volltext
Paper -
15
Social Trust Prediction Using Heterogeneous Networks
ISSN: 1556-4681Veröffentlicht: United States 01.11.2013Veröffentlicht in ACM transactions on knowledge discovery from data (01.11.2013)“… Along with increasing popularity of social websites, online users rely more on the trustworthiness information to make decisions, extract and filter …”
Weitere Angaben
Journal Article -
16
Integration of bioinformatics and machine learning strategies identifies APM-related gene signatures to predict clinical outcomes and therapeutic responses for breast cancer patients
ISSN: 1476-5586, 1522-8002, 1476-5586Veröffentlicht: United States Elsevier Inc 01.11.2023Veröffentlicht in Neoplasia (New York, N.Y.) (01.11.2023)“… ) were combined to screen for BRCA-specific APM-related genes. The non-negative matrix factorization (NMF …”
Volltext
Journal Article -
17
Fine-Grained Fault Diagnosis Method of Rolling Bearing Combining Multisynchrosqueezing Transform and Sparse Feature Coding Based on Dictionary Learning
ISSN: 1070-9622, 1875-9203Veröffentlicht: Cairo, Egypt Hindawi Publishing Corporation 2019Veröffentlicht in Shock and vibration (2019)“… Then, the basis dictionary was trained through nonnegative matrix factorization with sparseness constraints (NMFSC …”
Volltext
Journal Article -
18
Full correlation matrix analysis of fMRI data on Intel® Xeon Phi™ coprocessors
ISBN: 1450337236, 9781450337236ISSN: 2167-4337Veröffentlicht: New York, NY, USA ACM 15.11.2015Veröffentlicht in Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (15.11.2015)“… Full correlation matrix analysis (FCMA) is an unbiased approach for exhaustively studying interactions among brain regions in functional magnetic resonance imaging (fMRI …”
Volltext
Tagungsbericht -
19
SUSTain: Scalable Unsupervised Scoring for Tensors and its Application to Phenotyping
ISSN: 2154-817XVeröffentlicht: United States 01.07.2018Veröffentlicht in Proceedings / International Conference on Knowledge Discovery and Data Mining (01.07.2018)“… This paper presents a new method, which we call SUSTain, that extends real-valued matrix and tensor factorizations to data where values are integers …”
Weitere Angaben
Journal Article -
20
A novel approach for data-driven process and condition monitoring systems on the example of mill-turn centers
ISSN: 0944-6524, 1863-7353Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2018Veröffentlicht in Production engineering (Berlin, Germany) (01.06.2018)“… Implementing condition monitoring functionality in production machinery often proves to be a difficult task …”
Volltext
Journal Article

