Suchergebnisse - learning with errors (problems OR (problemsys OR problemsys))

  1. 1

    Learning from Errors von Metcalfe, Janet

    ISSN: 1545-2085, 1545-2085
    Veröffentlicht: United States 03.01.2017
    Veröffentlicht in Annual review of psychology (03.01.2017)
    “… Although error avoidance during learning appears to be the rule in American classrooms, laboratory studies suggest that it may be a counterproductive strategy, at least for neurologically typical students …”
    Weitere Angaben
    Journal Article
  2. 2

    Learning about structural errors in models of complex dynamical systems von Wu, Jin-Long, Levine, Matthew E., Schneider, Tapio, Stuart, Andrew

    ISSN: 0021-9991
    Veröffentlicht: Elsevier Inc 15.09.2024
    Veröffentlicht in Journal of computational physics (15.09.2024)
    “… Building on such closure models and correcting them through learning the structural errors can be an effective way of fusing data with domain knowledge …”
    Volltext
    Journal Article
  3. 3

    Rapid trial-and-error learning with simulation supports flexible tool use and physical reasoning von Allen, Kelsey R, Smith, Kevin A, Tenenbaum, Joshua B

    ISSN: 1091-6490, 1091-6490
    Veröffentlicht: United States 24.11.2020
    “… But human beings remain distinctive in their capacity for flexible, creative tool use-using objects in new ways to act on the world, achieve a goal, or solve a problem …”
    Weitere Angaben
    Journal Article
  4. 4

    Learning and correcting non-Gaussian model errors von Smyl, Danny, Tallman, Tyler N., Black, Jonathan A., Hauptmann, Andreas, Liu, Dong

    ISSN: 0021-9991, 1090-2716
    Veröffentlicht: Cambridge Elsevier Inc 01.05.2021
    Veröffentlicht in Journal of computational physics (01.05.2021)
    “… In this work, we address this challenge by proposing a neural network approach capable of accurately approximating and compensating for such modeling errors in augmented direct and inverse problems …”
    Volltext
    Journal Article
  5. 5

    Noise resilient quantum learning: Adaptive policy guided error mitigation in quantum reinforcement learning for the traveling salesman problem von Majid, Bisma, Sofi, Shabir Ahmed, Jabeen, Zamrooda

    ISSN: 1568-4946
    Veröffentlicht: Elsevier B.V 01.02.2026
    Veröffentlicht in Applied soft computing (01.02.2026)
    “… Quantum Reinforcement Learning (QRL) has emerged as a promising paradigm for solving combinatorial optimization problems by leveraging quantum parallelism and interference to enhance learning efficiency …”
    Volltext
    Journal Article
  6. 6

    Post-Quantum Key Exchange for the TLS Protocol from the Ring Learning with Errors Problem von Bos, Joppe W., Costello, Craig, Naehrig, Michael, Stebila, Douglas

    ISSN: 1081-6011
    Veröffentlicht: IEEE 01.05.2015
    “… ) protocol that provide key exchange based on the ring learning with errors (R-LWE) problem, we accompany these cipher suites with a rigorous proof of security …”
    Volltext
    Tagungsbericht
  7. 7

    Effects of self-explaining feedback on learning from problem-solving errors von Zhang, Qian, Fiorella, Logan

    ISSN: 0361-476X
    Veröffentlicht: Elsevier Inc 01.12.2024
    Veröffentlicht in Contemporary educational psychology (01.12.2024)
    “… •Modifying the layout of the feedback did not affect learning. We tested two potential ways to help students learn from feedback on their problem-solving errors in physics …”
    Volltext
    Journal Article
  8. 8

    Residual-based error correction for neural operator accelerated infinite-dimensional Bayesian inverse problems von Cao, Lianghao, O'Leary-Roseberry, Thomas, Jha, Prashant K., Oden, J. Tinsley, Ghattas, Omar

    ISSN: 0021-9991, 1090-2716
    Veröffentlicht: United States Elsevier Inc 01.08.2023
    Veröffentlicht in Journal of computational physics (01.08.2023)
    “… We explore using neural operators, or neural network representations of nonlinear maps between function spaces, to accelerate infinite-dimensional Bayesian inverse problems (BIPs …”
    Volltext
    Journal Article
  9. 9

    Using meta‐learning to predict performance metrics in machine learning problems von Carneiro, Davide, Guimarães, Miguel, Carvalho, Mariana, Novais, Paulo

    ISSN: 0266-4720, 1468-0394
    Veröffentlicht: Oxford Blackwell Publishing Ltd 01.01.2023
    Veröffentlicht in Expert systems (01.01.2023)
    “… Machine learning has been facing significant challenges over the last years, much of which stem from the new characteristics of machine learning problems, such as learning from streaming data …”
    Volltext
    Journal Article
  10. 10

    Generalization of machine learning for problem reduction: a case study on travelling salesman problems von Sun, Yuan, Ernst, Andreas, Li, Xiaodong, Weiner, Jake

    ISSN: 0171-6468, 1436-6304
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2021
    Veröffentlicht in OR Spectrum (01.09.2021)
    “… In this paper, we examine the generalization capability of a machine learning model for problem reduction on the classic travelling salesman problems (TSP …”
    Volltext
    Journal Article
  11. 11

    Understanding error patterns in students' solutions to linear function problems to design learning interventions von Elagha, Noor, Pellegrino, James W.

    ISSN: 0959-4752, 1873-3263
    Veröffentlicht: Elsevier Ltd 01.08.2024
    Veröffentlicht in Learning and instruction (01.08.2024)
    “… There were two overarching aims of the reported studies. One was to assess students’ understanding of LF and discern the cognitive underpinnings of common errors they make in these types of problems …”
    Volltext
    Journal Article
  12. 12

    Learning to construct a solution for UAV path planning problem with positioning error correction von Chun, Jie, Chen, Ming, Liu, Xiaolu, Xiang, Shang, Du, Yonghao, Wu, Guohua, Xing, Lining

    ISSN: 0950-7051
    Veröffentlicht: Elsevier B.V 25.11.2024
    Veröffentlicht in Knowledge-based systems (25.11.2024)
    “… This study seeks to solve the UAV path planning problem with positioning error correction (UPEC) with an end-to-end method …”
    Volltext
    Journal Article
  13. 13

    Deep Learning for Integrated Origin-Destination Estimation and Traffic Sensor Location Problems von Owais, Mahmoud

    ISSN: 1524-9050, 1558-0016
    Veröffentlicht: New York IEEE 01.07.2024
    “… This article provides a resilient deep learning (DL) architecture combined with a global sensitivity analysis tool to solve O-D estimation and sensor location problems simultaneously …”
    Volltext
    Journal Article
  14. 14

    Zero-Error Tracking Control Under Unified Quantized Iterative Learning Framework via Encoding-Decoding Method von Shen, Dong, Zhang, Chao

    ISSN: 2168-2267, 2168-2275, 2168-2275
    Veröffentlicht: United States IEEE 01.04.2022
    Veröffentlicht in IEEE transactions on cybernetics (01.04.2022)
    “… This article considers the zero-error tracking problem of quantized iterative learning control for a general networked structure where the data are quantized and transmitted through limited …”
    Volltext
    Journal Article
  15. 15

    Solving a Higgs optimization problem with quantum annealing for machine learning von Mott, Alex, Job, Joshua, Vlimant, Jean-Roch, Lidar, Daniel, Spiropulu, Maria

    ISSN: 0028-0836, 1476-4687, 1476-4687
    Veröffentlicht: London Nature Publishing Group UK 19.10.2017
    Veröffentlicht in Nature (London) (19.10.2017)
    “… Here, Alex Mott and colleagues implement a 'signal versus background' machine learning optimization problem that can be used in the search for Higgs bosons at the Large Hadron Collider at CERN and at future colliders …”
    Volltext
    Journal Article
  16. 16

    Students' errors in solving probability problems viewed by learning style von Salido, A, Dasari, D

    ISSN: 1742-6588, 1742-6596
    Veröffentlicht: Bristol IOP Publishing 01.04.2019
    Veröffentlicht in Journal of physics. Conference series (01.04.2019)
    “… This study aims to describe students' errors in probability problems viewed by learning styles …”
    Volltext
    Journal Article
  17. 17

    Mitigating the Multicollinearity Problem and Its Machine Learning Approach: A Review von Chan, Jireh Yi-Le, Leow, Steven Mun Hong, Bea, Khean Thye, Cheng, Wai Khuen, Phoong, Seuk Wai, Hong, Zeng-Wei, Chen, Yen-Lin

    ISSN: 2227-7390, 2227-7390
    Veröffentlicht: Basel MDPI AG 01.04.2022
    Veröffentlicht in Mathematics (Basel) (01.04.2022)
    “… Although this presents opportunities to better model the relationship between predictors and the response variables, this also causes serious problems during data analysis, one of which is the multicollinearity problem …”
    Volltext
    Journal Article
  18. 18

    Fostering Learning from Errors—Computer-Based Adaptivity at the Transition Between Problem Solving and Explicit Instruction von Boomgaarden, Antje, Loibl, Katharina, Leuders, Timo

    ISSN: 0173-5322, 1869-2699
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2024
    Veröffentlicht in Journal für Mathematik-Didaktik (Internet) (01.12.2024)
    “… When learners acquire new content by working on a problem-solving task prior to explicit instruction, their attempts to solve the problem usually represent only partial steps on the way to the target concept …”
    Volltext
    Journal Article
  19. 19

    Error control and loss functions for the deep learning inversion of borehole resistivity measurements von Shahriari, Mostafa, Pardo, David, Rivera, Jon A., Torres‐Verdín, Carlos, Picon, Artzai, Del Ser, Javier, Ossandón, Sebastian, Calo, Victor M.

    ISSN: 0029-5981, 1097-0207
    Veröffentlicht: Hoboken, USA John Wiley & Sons, Inc 30.03.2021
    “… Deep learning (DL) is a numerical method that approximates functions. Recently, its use has become attractive for the simulation and inversion of multiple …”
    Volltext
    Journal Article
  20. 20

    NN‐mCRE: A modified constitutive relation error framework for unsupervised learning of nonlinear state laws with physics‐augmented neural networks von Benady, Antoine, Baranger, Emmanuel, Chamoin, Ludovic

    ISSN: 0029-5981, 1097-0207
    Veröffentlicht: Hoboken, USA John Wiley & Sons, Inc 30.04.2024
    “… The neural network is trained thanks to an unsupervised procedure in which the modified constitutive relation error (mCRE) is minimized …”
    Volltext
    Journal Article