Suchergebnisse - learning with errors (problem OR (problems OR (problems OR problems)))

  1. 1

    Generalization of machine learning for problem reduction: a case study on travelling salesman problems von Sun, Yuan, Ernst, Andreas, Li, Xiaodong, Weiner, Jake

    ISSN: 0171-6468, 1436-6304
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2021
    Veröffentlicht in OR Spectrum (01.09.2021)
    “… In this paper, we examine the generalization capability of a machine learning model for problem reduction on the classic travelling salesman problems (TSP …”
    Volltext
    Journal Article
  2. 2

    Prediction Policy Problems von Kleinberg, Jon, Ludwig, Jens, Mullainathan, Sendhil, Obermeyer, Ziad

    ISSN: 0002-8282, 1944-7981
    Veröffentlicht: United States American Economic Association 01.05.2015
    Veröffentlicht in The American economic review (01.05.2015)
    “… these “prediction policy problems” requires more than simple regression techniques, since these are tuned to generating unbiased estimates of coefficients rather than minimizing prediction error …”
    Volltext
    Journal Article
  3. 3

    Solving Inverse Problems With Deep Neural Networks - Robustness Included? von Genzel, Martin, Macdonald, Jan, Marz, Maximilian

    ISSN: 0162-8828, 1939-3539, 2160-9292, 1939-3539
    Veröffentlicht: United States IEEE 01.01.2023
    “… In the past five years, deep learning methods have become state-of-the-art in solving various inverse problems …”
    Volltext
    Journal Article
  4. 4

    Deep Learning for Integrated Origin-Destination Estimation and Traffic Sensor Location Problems von Owais, Mahmoud

    ISSN: 1524-9050, 1558-0016
    Veröffentlicht: New York IEEE 01.07.2024
    “… This article provides a resilient deep learning (DL) architecture combined with a global sensitivity analysis tool to solve O-D estimation and sensor location problems simultaneously …”
    Volltext
    Journal Article
  5. 5

    Residual-based error correction for neural operator accelerated infinite-dimensional Bayesian inverse problems von Cao, Lianghao, O'Leary-Roseberry, Thomas, Jha, Prashant K., Oden, J. Tinsley, Ghattas, Omar

    ISSN: 0021-9991, 1090-2716
    Veröffentlicht: United States Elsevier Inc 01.08.2023
    Veröffentlicht in Journal of computational physics (01.08.2023)
    “… We explore using neural operators, or neural network representations of nonlinear maps between function spaces, to accelerate infinite-dimensional Bayesian inverse problems (BIPs …”
    Volltext
    Journal Article
  6. 6

    Solving a Higgs optimization problem with quantum annealing for machine learning von Mott, Alex, Job, Joshua, Vlimant, Jean-Roch, Lidar, Daniel, Spiropulu, Maria

    ISSN: 0028-0836, 1476-4687, 1476-4687
    Veröffentlicht: London Nature Publishing Group UK 19.10.2017
    Veröffentlicht in Nature (London) (19.10.2017)
    “… Here, Alex Mott and colleagues implement a 'signal versus background' machine learning optimization problem that can be used in the search for Higgs bosons at the Large Hadron Collider at CERN and at future colliders …”
    Volltext
    Journal Article
  7. 7

    A-PINN: Auxiliary physics informed neural networks for forward and inverse problems of nonlinear integro-differential equations von Yuan, Lei, Ni, Yi-Qing, Deng, Xiang-Yun, Hao, Shuo

    ISSN: 0021-9991, 1090-2716
    Veröffentlicht: Cambridge Elsevier Inc 01.08.2022
    Veröffentlicht in Journal of computational physics (01.08.2022)
    “… Physics informed neural networks (PINNs) are a novel deep learning paradigm primed for solving forward and inverse problems of nonlinear partial differential equations (PDEs …”
    Volltext
    Journal Article
  8. 8

    Mitigating the Multicollinearity Problem and Its Machine Learning Approach: A Review von Chan, Jireh Yi-Le, Leow, Steven Mun Hong, Bea, Khean Thye, Cheng, Wai Khuen, Phoong, Seuk Wai, Hong, Zeng-Wei, Chen, Yen-Lin

    ISSN: 2227-7390, 2227-7390
    Veröffentlicht: Basel MDPI AG 01.04.2022
    Veröffentlicht in Mathematics (Basel) (01.04.2022)
    “… Although this presents opportunities to better model the relationship between predictors and the response variables, this also causes serious problems during data analysis, one of which is the multicollinearity problem …”
    Volltext
    Journal Article
  9. 9

    Using meta‐learning to predict performance metrics in machine learning problems von Carneiro, Davide, Guimarães, Miguel, Carvalho, Mariana, Novais, Paulo

    ISSN: 0266-4720, 1468-0394
    Veröffentlicht: Oxford Blackwell Publishing Ltd 01.01.2023
    Veröffentlicht in Expert systems (01.01.2023)
    “… Machine learning has been facing significant challenges over the last years, much of which stem from the new characteristics of machine learning problems, such as learning from streaming data …”
    Volltext
    Journal Article
  10. 10

    Pushing the frontiers of density functionals by solving the fractional electron problem von Kirkpatrick, James, McMorrow, Brendan, Turban, David H P, Gaunt, Alexander L, Spencer, James S, Matthews, Alexander G D G, Obika, Annette, Thiry, Louis, Fortunato, Meire, Pfau, David, Castellanos, Lara Román, Petersen, Stig, Nelson, Alexander W R, Kohli, Pushmeet, Mori-Sánchez, Paula, Hassabis, Demis, Cohen, Aron J

    ISSN: 1095-9203, 1095-9203
    Veröffentlicht: United States 10.12.2021
    “… Density functional theory describes matter at the quantum level, but all popular approximations suffer from systematic errors that arise from the violation of mathematical properties of the exact functional …”
    Weitere Angaben
    Journal Article
  11. 11

    Learning from Errors von Metcalfe, Janet

    ISSN: 1545-2085, 1545-2085
    Veröffentlicht: United States 03.01.2017
    Veröffentlicht in Annual review of psychology (03.01.2017)
    “… Although error avoidance during learning appears to be the rule in American classrooms, laboratory studies suggest that it may be a counterproductive strategy, at least for neurologically typical students …”
    Weitere Angaben
    Journal Article
  12. 12

    A unified approach to error bounds for structured convex optimization problems von Zhou, Zirui, So, Anthony Man-Cho

    ISSN: 0025-5610, 1436-4646
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2017
    Veröffentlicht in Mathematical programming (01.10.2017)
    “… of a host of iterative methods for solving optimization problems. In this paper, we present a new framework for establishing error bounds for a class of structured …”
    Volltext
    Journal Article
  13. 13

    Understanding error patterns in students' solutions to linear function problems to design learning interventions von Elagha, Noor, Pellegrino, James W.

    ISSN: 0959-4752, 1873-3263
    Veröffentlicht: Elsevier Ltd 01.08.2024
    Veröffentlicht in Learning and instruction (01.08.2024)
    “… There were two overarching aims of the reported studies. One was to assess students’ understanding of LF and discern the cognitive underpinnings of common errors they make in these types of problems …”
    Volltext
    Journal Article
  14. 14

    Noise resilient quantum learning: Adaptive policy guided error mitigation in quantum reinforcement learning for the traveling salesman problem von Majid, Bisma, Sofi, Shabir Ahmed, Jabeen, Zamrooda

    ISSN: 1568-4946
    Veröffentlicht: Elsevier B.V 01.02.2026
    Veröffentlicht in Applied soft computing (01.02.2026)
    “… Quantum Reinforcement Learning (QRL) has emerged as a promising paradigm for solving combinatorial optimization problems by leveraging quantum parallelism and interference to enhance learning efficiency …”
    Volltext
    Journal Article
  15. 15

    Rapid trial-and-error learning with simulation supports flexible tool use and physical reasoning von Allen, Kelsey R, Smith, Kevin A, Tenenbaum, Joshua B

    ISSN: 1091-6490, 1091-6490
    Veröffentlicht: United States 24.11.2020
    “… But human beings remain distinctive in their capacity for flexible, creative tool use-using objects in new ways to act on the world, achieve a goal, or solve a problem …”
    Weitere Angaben
    Journal Article
  16. 16

    Post-Quantum Key Exchange for the TLS Protocol from the Ring Learning with Errors Problem von Bos, Joppe W., Costello, Craig, Naehrig, Michael, Stebila, Douglas

    ISSN: 1081-6011
    Veröffentlicht: IEEE 01.05.2015
    “… ) protocol that provide key exchange based on the ring learning with errors (R-LWE) problem, we accompany these cipher suites with a rigorous proof of security …”
    Volltext
    Tagungsbericht
  17. 17

    Effects of self-explaining feedback on learning from problem-solving errors von Zhang, Qian, Fiorella, Logan

    ISSN: 0361-476X
    Veröffentlicht: Elsevier Inc 01.12.2024
    Veröffentlicht in Contemporary educational psychology (01.12.2024)
    “… •Modifying the layout of the feedback did not affect learning. We tested two potential ways to help students learn from feedback on their problem-solving errors in physics …”
    Volltext
    Journal Article
  18. 18

    Deep problems with neural network models of human vision von Bowers, Jeffrey S., Malhotra, Gaurav, Dujmović, Marin, Llera Montero, Milton, Tsvetkov, Christian, Biscione, Valerio, Puebla, Guillermo, Adolfi, Federico, Hummel, John E., Heaton, Rachel F., Evans, Benjamin D., Mitchell, Jeffrey, Blything, Ryan

    ISSN: 0140-525X, 1469-1825, 1469-1825
    Veröffentlicht: New York, USA Cambridge University Press 01.01.2023
    Veröffentlicht in The Behavioral and brain sciences (01.01.2023)
    “… ) DNNs do the best job in predicting the pattern of human errors in classifying objects taken from various behavioral datasets, and (3 …”
    Volltext
    Journal Article
  19. 19

    Strong rules for discarding predictors in lasso-type problems von Tibshirani, Robert, Bien, Jacob, Friedman, Jerome, Hastie, Trevor, Simon, Noah, Taylor, Jonathan, Tibshirani, Ryan J.

    ISSN: 1369-7412, 1467-9868
    Veröffentlicht: Oxford, UK Blackwell Publishing Ltd 01.03.2012
    “… We consider rules for discarding predictors in lasso regression and related problems, for computational efficiency …”
    Volltext
    Journal Article
  20. 20

    Learning to construct a solution for UAV path planning problem with positioning error correction von Chun, Jie, Chen, Ming, Liu, Xiaolu, Xiang, Shang, Du, Yonghao, Wu, Guohua, Xing, Lining

    ISSN: 0950-7051
    Veröffentlicht: Elsevier B.V 25.11.2024
    Veröffentlicht in Knowledge-based systems (25.11.2024)
    “… This study seeks to solve the UAV path planning problem with positioning error correction (UPEC) with an end-to-end method …”
    Volltext
    Journal Article