Suchergebnisse - last square iterative linear inversion algorithm~

  • Treffer 1 - 5 von 5
Treffer weiter einschränken
  1. 1
  2. 2

    A low complexity iterative soft-decision feedback MMSE-PIC detection algorithm for massive MIMO von Licai Fang, Lu Xu, Qinghua Guo, Defeng Huang, Nordholm, Sven

    ISSN: 1520-6149
    Veröffentlicht: IEEE 01.04.2015
    “… Then we derive a new method to calculate the matrix inversion by a linear combination of two matrices, which reduces …”
    Volltext
    Tagungsbericht
  3. 3

    Gravity inversion using wavelet-based compression on parallel hybrid CPU/GPU systems: application to southwest Ghana von Martin, Roland, Monteiller, Vadim, Komatitsch, Dimitri, Perrouty, Stéphane, Jessell, Mark, Bonvalot, Sylvain, Lindsay, Mark

    ISSN: 0956-540X, 1365-246X
    Veröffentlicht: Oxford University Press 01.12.2013
    Veröffentlicht in Geophysical journal international (01.12.2013)
    “… In a new software package called TOMOFAST3D, the inversion is solved with an iterative least-square or a gradient technique, which minimizes a hybrid L 1-/L 2-norm-based misfit function …”
    Volltext
    Journal Article
  4. 4

    A computational framework of gradient flows for general linear matrix equations von Wang, Liqi, Chu, Moody T., Bo, Yu

    ISSN: 1017-1398, 1572-9265
    Veröffentlicht: Boston Springer US 01.01.2015
    Veröffentlicht in Numerical algorithms (01.01.2015)
    “… A conversion to a classical linear system A x = b via the Kronecker product is generally regarded as the last resort because it significantly increases the size of the problem and disrespects any underlying structure …”
    Volltext
    Journal Article
  5. 5

    Applications of hybrid genetic algorithms in seismic tomography von Soupios, Pantelis, Akca, Irfan, Mpogiatzis, Petros, Basokur, Ahmet T., Papazachos, Constantinos

    ISSN: 0926-9851, 1879-1859
    Veröffentlicht: Oxford Elsevier B.V 01.11.2011
    Veröffentlicht in Journal of applied geophysics (01.11.2011)
    “… Almost all earth sciences inverse problems are nonlinear and involve a large number of unknown parameters, making the application of analytical inversion methods quite restrictive …”
    Volltext
    Journal Article