Suchergebnisse - hybrid deep convolutional autoencoder~

Andere Suchmöglichkeiten:

  1. 1

    DHCAE: Deep Hybrid Convolutional Autoencoder Approach for Robust Supervised Hyperspectral Unmixing von Hadi, Fazal, Yang, Jingxiang, Ullah, Matee, Ahmad, Irfan, Farooque, Ghulam, Xiao, Liang

    ISSN: 2072-4292, 2072-4292
    Veröffentlicht: Basel MDPI AG 01.09.2022
    Veröffentlicht in Remote sensing (Basel, Switzerland) (01.09.2022)
    “… In this paper, we present a new method for robust supervised HSU based on a deep hybrid (3D and 2D) convolutional autoencoder …”
    Volltext
    Journal Article
  2. 2

    Effective android malware detection with a hybrid model based on deep autoencoder and convolutional neural network von Wang, Wei, Zhao, Mengxue, Wang, Jigang

    ISSN: 1868-5137, 1868-5145
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2019
    “… Android security incidents occurred frequently in recent years. To improve the accuracy and efficiency of large-scale Android malware detection, in this work, we propose a hybrid model based on deep autoencoder (DAE …”
    Volltext
    Journal Article
  3. 3
  4. 4

    Driver distracted detection using a new hybrid deep convolutional neural network based on Autoencoder von Hassam, Dhulfekar Dhurgham, Mohamme, Ayas Talib, Sadiq, Arcelan S, Salman, Baraa Yousif

    ISSN: 2631-8695, 2631-8695
    Veröffentlicht: IOP Publishing 31.12.2025
    Veröffentlicht in Engineering Research Express (31.12.2025)
    “… To counter these problems, we propose a novel deep convolutional network with the introduction of an Autoencoder-based feature dimensionality reduction, an Attention mechanism towards better feature …”
    Volltext
    Journal Article
  5. 5

    An automated hybrid attention based deep convolutional capsule with weighted autoencoder approach for skin cancer classification von Desale, R.P., Patil, P.S.

    ISSN: 1368-2199, 1743-131X
    Veröffentlicht: Taylor & Francis 02.10.2024
    Veröffentlicht in The imaging science journal (02.10.2024)
    “… It is essential to identify the disease at the initial stage and eliminate it from spreading. Hence, this research introduces an automated hybrid deep learning (DL …”
    Volltext
    Journal Article
  6. 6

    Breast Cancer Detection using Convolutional Autoencoder with Hybrid Deep Learning Model von S. Ranjana, A. Meenakshi

    ISSN: 2149-9144, 2149-9144
    Veröffentlicht: 14.03.2025
    “… ) which is called Convolutional Neural Network (CNN). This research focused to create a hybrid DL model with a single test that subjected at inference …”
    Volltext
    Journal Article
  7. 7

    RESEARCH ON IIOT SECURITY: NOVEL MACHINE LEARNING-BASED INTRUSION DETECTION USING TCP/IP PACKETS von Agarwal, Neha, Pandey P., Rajendra, Rajagopal, Smitha

    ISSN: 2620-2832, 2683-4111
    Veröffentlicht: University of Kragujevac 05.09.2023
    Veröffentlicht in Proceedings on engineering sciences (Online) (05.09.2023)
    “… ). In order to detect intrusions in the IIoT environment utilizing TCP/IP packets, this work introduces a novel Hybrid Deep Convolutional Autoencoder and Splinted Decision Tree (HDCA-SDT) technique …”
    Volltext
    Journal Article
  8. 8

    Detecting Brain Tumor Stages Using Convolutional AutoEncoder (CAE) with Hybrid Deep Learning Method von Agalya, D, Kamalakkannan, S.

    Veröffentlicht: IEEE 10.07.2024
    “… Models are created using Deep Learning (DL) and Magnetic Resonance Imaging (MRI) to classify and diagnose brain tumours …”
    Volltext
    Tagungsbericht
  9. 9

    Deep ensemble model with blockchain technology for lung cancer detection with secured data sharing von Kalidindi, Hari Krishna, Srinivasu, N.

    ISSN: 1476-9271, 1476-928X, 1476-928X
    Veröffentlicht: England Elsevier Ltd 01.02.2026
    Veröffentlicht in Computational biology and chemistry (01.02.2026)
    “… Lung cancer is one of the leading causes of cancer-related mortality globally, primarily due to the high frequency of late-stage diagnoses. While existing …”
    Volltext
    Journal Article
  10. 10

    A deep autoencoder based approach for the inverse design of an acoustic-absorber von Mahesh, K., Ranjith, S. Kumar, Mini, R. S.

    ISSN: 0177-0667, 1435-5663
    Veröffentlicht: London Springer London 01.02.2024
    Veröffentlicht in Engineering with computers (01.02.2024)
    “… This paper proposes an algorithm to perform the inverse design of a low-frequency acoustic absorber using a deep convolutional autoencoder network …”
    Volltext
    Journal Article
  11. 11

    Hybrid Deep Convolutional Neural Networks Combined with Autoencoders and Augmented Data to Predict the Look-Up Table 2006 von Djeddou, Messaoud, Dallal, Jehad Al, Hellal, Aouatef, Hameed, Ibrahim A., Zhao, Xingang

    Veröffentlicht: IEEE 11.12.2024
    “… This study presents a novel predictive method integrating auto-encoders with deep convolutional neural networks (DCNN …”
    Volltext
    Tagungsbericht
  12. 12

    Precise single step and multistep short-term photovoltaic parameters forecasting based on reduced deep convolutional stack autoencoder and minimum variance multikernel random vector functional network von Sahani, Mrutyunjaya, Choudhury, Sasmita, Siddique, Marif Daula, Parida, Tanmoy, Dash, Pradipta Kishore, Panda, Sanjib Kumar

    ISSN: 0952-1976
    Veröffentlicht: Elsevier Ltd 01.10.2024
    Veröffentlicht in Engineering applications of artificial intelligence (01.10.2024)
    “… To address this, we have developed a novel hybrid model: a reduced deep convolutional stack autoencoder with a minimum variance multikernel random vector functional link network (RDCSAE-MVMRVFLN …”
    Volltext
    Journal Article
  13. 13

    Hybrid deep learning for computational precision in cardiac MRI segmentation: Integrating Autoencoders, CNNs, and RNNs for enhanced structural analysis von Sufian, Md Abu, Niu, Mingbo

    ISSN: 0010-4825, 1879-0534, 1879-0534
    Veröffentlicht: United States Elsevier Ltd 01.03.2025
    Veröffentlicht in Computers in biology and medicine (01.03.2025)
    “… The research paper explores the application of hybrid deep learning methodologies, focusing on the roles of Autoencoders, Convolutional Neural Networks (CNNs …”
    Volltext
    Journal Article
  14. 14

    Convolutional autoencoder-based deep learning for intracerebral hemorrhage classification using brain CT images von Nageswara Rao, B., Acharya, U. Rajendra, Tan, Ru-San, Dash, Pratyusa, Mohapatra, Manoranjan, Sabut, Sukanta

    ISSN: 1871-4080, 1871-4099
    Veröffentlicht: Dordrecht Springer Netherlands 01.12.2025
    Veröffentlicht in Cognitive neurodynamics (01.12.2025)
    “… We proposed a hybrid deep learning model for automated ICH diagnosis using NCCT images, which comprises a convolutional autoencoder (CAE …”
    Volltext
    Journal Article
  15. 15

    Hybrid Deep Convolutional Neural Networks Combined with Autoencoders And Augmented Data To Predict The Look-Up Table 2006 von Djeddou, Messaoud, Hellal, Aouatef, Hameed, Ibrahim A, Zhao, Xingang, Djehad Al Dallal

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 26.08.2024
    Veröffentlicht in arXiv.org (26.08.2024)
    “… This study explores the development of a hybrid deep convolutional neural network (DCNN …”
    Volltext
    Paper
  16. 16

    IMDAC: A robust intelligent software defect prediction model via multi‐objective optimization and end‐to‐end hybrid deep learning networks von Zhu, Kun, Zhang, Nana, Jiang, Changjun, Zhu, Dandan

    ISSN: 0038-0644, 1097-024X
    Veröffentlicht: Bognor Regis Wiley Subscription Services, Inc 01.02.2024
    Veröffentlicht in Software, practice & experience (01.02.2024)
    “… In this article, we propose a robust intelligent SDP model called IMDAC based on deep learning and soft computing techniques …”
    Volltext
    Journal Article
  17. 17

    Detection and classification of electrocardiography using hybrid deep learning models von Selvam, Immaculate Joy, Madhavan, Moorthi, Kumarasamy, Senthil Kumar

    ISSN: 2241-5955, 2241-5955
    Veröffentlicht: Netherlands 01.01.2025
    Veröffentlicht in Hellenic journal of cardiology (01.01.2025)
    “… Precision of ECG classification through a hybrid Deep Learning (DL) approach leverages both Convolutional Neural Network (CNN …”
    Weitere Angaben
    Journal Article
  18. 18

    Intelligent framework for unsupervised damage detection in bridges using deep convolutional autoencoder with wavelet transmissibility pattern spectra von Li, Shuai, Cao, Yuxi, Gdoutos, Emmanuel E., Tao, Mei, Faisal Alkayem, Nizar, Avci, Onur, Cao, Maosen

    ISSN: 0888-3270
    Veröffentlicht: Elsevier Ltd 01.11.2024
    Veröffentlicht in Mechanical systems and signal processing (01.11.2024)
    “… Deep Learning has been increasingly utilized in structural damage detection. Existing relevant studies often highlight the benefits of supervised deep learning in the intelligent identification of bridge damage …”
    Volltext
    Journal Article
  19. 19

    A hybrid deep learning-based fruit classification using attention model and convolution autoencoder von Xue, Gang, Liu, Shifeng, Ma, Yicao

    ISSN: 2199-4536, 2198-6053
    Veröffentlicht: Cham Springer International Publishing 01.06.2023
    Veröffentlicht in Complex & intelligent systems (01.06.2023)
    “… chain, factories, supermarkets, and other fields. In this paper, we develop a hybrid deep learning-based fruit image classification framework, named attention-based densely connected convolutional networks with convolution autoencoder (CAE-ADN …”
    Volltext
    Journal Article
  20. 20

    A novel hybrid framework for wind speed forecasting using autoencoder‐based convolutional long short‐term memory network von Kosana, Vishalteja, Madasthu, Santhosh, Teeparthi, Kiran

    ISSN: 2050-7038, 2050-7038
    Veröffentlicht: Hoboken John Wiley & Sons, Inc 01.11.2021
    “… ) autoencoder, convolutional neural network (CNN), and LSTM model for enhanced WSF. The proposed hybrid approach is divided into two main components …”
    Volltext
    Journal Article