Výsledky vyhľadávania - gradient-based optimization algorithm based on the state transition function (STOBO)*

  1. 1

    A fast optimization approach for seeking Nash equilibrium based on Nikaido–Isoda function, state transition algorithm and Gauss–Seidel technique Autor Zhou, Xiaojun, Wang, Zheng, Huang, Tingwen

    ISSN: 0925-2312
    Vydavateľské údaje: Elsevier B.V 01.02.2025
    Vydané v Neurocomputing (Amsterdam) (01.02.2025)
    “… Specifically, a dynamic state transition algorithm (STA) is proposed to seek global optima of subproblems at each iteration, and the sequential quadratic programming (SQP…”
    Získať plný text
    Journal Article
  2. 2

    Gradient-based Optimization Algorithm for Hybrid Loss Function in Low-dose CT Denoising Autor Mazandarani, Farzan Niknejad, Marcos, Luella, Babyn, Paul, Alirezaie, Javad

    ISSN: 2694-0604, 2694-0604
    Vydavateľské údaje: IEEE 01.01.2022
    “…)-based denoising network. Objective functions in deep learning algorithms are the main keys for optimizing the parameters of a network and can affect the quality of the denoised image significantly…”
    Získať plný text
    Konferenčný príspevok.. Journal Article
  3. 3

    An RNA evolutionary algorithm based on gradient descent for function optimization Autor Wu, Qiuxuan, Zhao, Zikai, Chen, Mingming, Chi, Xiaoni, Zhang, Botao, Wang, Jian, Zhilenkov, Anton A, Chepinskiy, Sergey A

    ISSN: 2288-5048, 2288-4300, 2288-5048
    Vydavateľské údaje: Oxford Oxford University Press 01.08.2024
    “… Although RNA genetic algorithms offer clear benefits in function optimization, including rapid convergence, they have low accuracy and can easily become trapped in local optima…”
    Získať plný text
    Journal Article
  4. 4

    Developments in stochastic optimization algorithms with gradient approximations based on function measurements Autor Spall, J.C.

    ISBN: 078032109X, 9780780321090
    Vydavateľské údaje: IEEE 1994
    “…There has recently been much interest in recursive optimization algorithms that rely on measurements of only the objective function, not requiring measurements of the gradient…”
    Získať plný text
    Konferenčný príspevok..
  5. 5

    Developments in stochastic optimization algorithms with gradient approximations based on function measurements Autor Spall, James C.

    ISBN: 078032109X, 9780780321090
    Vydavateľské údaje: San Diego, CA, USA Society for Computer Simulation International 11.12.1994
    Získať plný text
    Konferenčný príspevok..
  6. 6

    Optimization of reward shaping function based on genetic algorithm applied to a cross validated deep deterministic policy gradient in a powered landing guidance problem Autor Nugroho, Larasmoyo, Andiarti, Rika, Akmeliawati, Rini, Kutay, Ali Türker, Larasati, Diva Kartika, Wijaya, Sastra Kusuma

    ISSN: 0952-1976, 1873-6769
    Vydavateľské údaje: Elsevier Ltd 01.04.2023
    “…One major capability of a Deep Reinforcement Learning (DRL) agent to control a specific vehicle in an environment without any prior knowledge is decision-making based on a well-designed reward shaping function…”
    Získať plný text
    Journal Article
  7. 7

    Scaling-up topology optimization with target stress states via gradient-based algorithms Autor Mauersberger, Michael, Dexl, Florian, Markmiller, Johannes F.C.

    ISSN: 0045-7949
    Vydavateľské údaje: Elsevier Ltd 01.07.2025
    Vydané v Computers & structures (01.07.2025)
    “…•Gradient-based topology optimization was successfully used for target stress states.•Target stress states need an indirect formulation considering compliant mechanisms…”
    Získať plný text
    Journal Article
  8. 8

    A consensus algorithm based on multi-agent system with state noise and gradient disturbance for distributed convex optimization Autor Meng, Xiwang, Liu, Qingshan

    ISSN: 0925-2312, 1872-8286
    Vydavateľské údaje: Elsevier B.V 28.01.2023
    Vydané v Neurocomputing (Amsterdam) (28.01.2023)
    “… Taking these factors into consideration, in this paper a distributed algorithm with state noise and gradient disturbance is proposed for solving distributed optimization problem with closed convex…”
    Získať plný text
    Journal Article
  9. 9

    Data-Driven Based State Transition Algorithm for Dynamic Optimization Autor Zhang, Yunxiang, Zhou, Xiaojun, Yang, Chunhua

    Vydavateľské údaje: IEEE 01.12.2019
    “… In this paper, a novel dynamic optimization technique based on data-driven state transition algorithm (STA…”
    Získať plný text
    Konferenčný príspevok..
  10. 10

    State transition probability based sensing duration optimization algorithm in cognitive radio Autor ZHANG Xiao, WANG Jin-long, WU Qi-hui

    ISSN: 1000-436X
    Vydavateľské údaje: Editorial Department of Journal on Communications 01.01.2011
    Vydané v Tongxin Xuebao (01.01.2011)
    “… efficiencies.The relation-ship between sensing duration and state transition probability was analyzed when the licensed channel stays in the idle and busy states respectively,based on which,a state transition…”
    Získať plný text
    Journal Article
  11. 11

    State transition probability based sensing duration optimization algorithm in cognitive radio Autor Zhang, Xiao, Wang, Jin-Long, Wu, Qi-Hui

    ISSN: 1000-436X
    Vydavateľské údaje: Editorial Department of Journal on Communications 01.08.2011
    Vydané v Tongxin Xuebao (01.08.2011)
    “… The relationship between sensing duration and state transition probability was analyzed when the licensed channel stays in the idle and busy states respectively, based on which, a state transition…”
    Získať plný text
    Journal Article
  12. 12

    Deep Forest Regression Based on Dynamic State Transition Optimization Algorithm Autor Xia, Heng, Tang, Jian, Qiao, Junfei

    ISSN: 2688-0938
    Vydavateľské údaje: IEEE 06.11.2020
    Vydané v Chinese Automation Congress (Online) (06.11.2020)
    “… To achieved more accurate optimization process, the error change rate is used to fine-tuning the state factor during the iteration process, which is further improved with gradient-based refinement…”
    Získať plný text
    Konferenčný príspevok..
  13. 13

    Multiagent based state transition algorithm for global optimization Autor Zhou, Xiaojun

    ISSN: 2331-8422
    Vydavateľské údaje: Ithaca Cornell University Library, arXiv.org 05.03.2021
    Vydané v arXiv.org (05.03.2021)
    “…In this paper, a novel multiagent based state transition optimization algorithm with linear convergence rate named MASTA is constructed…”
    Získať plný text
    Paper
  14. 14

    A Multi-Agent Centralized Strategy Gradient Reinforcement Learning Algorithm Based on State Transition Autor Sheng, Lei, Chen, Honghui, Chen, Xiliang

    ISSN: 1999-4893, 1999-4893
    Vydavateľské údaje: Basel MDPI AG 01.12.2024
    Vydané v Algorithms (01.12.2024)
    “… strategy gradient algorithm grounded in a local state transition mechanism. In order to solve this challenge, the algorithm learns local state and local state-action representation from local observations and action values, thereby establishing…”
    Získať plný text
    Journal Article
  15. 15

    State-Transition-Algorithm-Based Underwater Multiple Objects Localization With Gravitational Field and Its Gradient Tensor Autor Zhao, Tingting, Tang, Jingtian, Hu, Shuanggui, Lu, Guangyin, Zhou, Xiaojun, Zhong, Yiyuan

    ISSN: 1545-598X, 1558-0571
    Vydavateľské údaje: Piscataway IEEE 01.02.2020
    “… To deal with this issue, a global optimization algorithm, named as the state transition algorithm (STA…”
    Získať plný text
    Journal Article
  16. 16

    Dynamic optimization based on state transition algorithm for copper removal process Autor Huang, Miao, Zhou, Xiaojun, Huang, Tingwen, Yang, Chunhua, Gui, Weihua

    ISSN: 0941-0643, 1433-3058
    Vydavateľské údaje: London Springer London 01.07.2019
    Vydané v Neural computing & applications (01.07.2019)
    “… A novel dynamic optimization method based on the state transition algorithm (STA) is investigated for solving this problem, and to improve…”
    Získať plný text
    Journal Article
  17. 17

    A State Transition Algorithm based Convolutional Neural Network Optimization Method to Froth Flotation Monitoring Autor Du, Yangyi, Zhou, Xiaojun

    ISSN: 2688-0938
    Vydavateľské údaje: IEEE 25.11.2022
    Vydané v Chinese Automation Congress (Online) (25.11.2022)
    “… Therefore, a state transition algorithm (STA) based CNN optimization framework is proposed in this paper…”
    Získať plný text
    Konferenčný príspevok..
  18. 18

    Transition state performance optimization of propfan engine based on DDPG algorithm Autor Zheng, Hua, Yang, Zhao-xing, Wang, Ya-fan, Zhao, Dong-zhu

    ISSN: 1742-6588, 1742-6596
    Vydavateľské údaje: Bristol IOP Publishing 01.05.2023
    Vydané v Journal of physics. Conference series (01.05.2023)
    “… This paper studies the performance optimization control of propfan engine based on deep reinforcement learning algorithm…”
    Získať plný text
    Journal Article
  19. 19

    Broad reinforcement learning based adaptive state transition algorithm for global optimization Autor Du, Yangyi, Zhou, Xiaojun, Yang, Chunhua, Gui, Weihua

    ISSN: 2210-6502
    Vydavateľské údaje: Elsevier B.V 01.08.2025
    Vydané v Swarm and evolutionary computation (01.08.2025)
    “…The state transition algorithm (STA) is an efficient intelligent optimization method with superior search capabilities in diverse applications, while its key operator selection strategies depend on manual design…”
    Získať plný text
    Journal Article
  20. 20

    An Analysis of Optimization for Car PBS Scheduling Based on Greedy Strategy State Transition Algorithm Autor Yu, Fengxiao, Peng, Yipu, Li, Jian, Zhou, Guangqi, Chen, Li

    ISSN: 2076-3417, 2076-3417
    Vydavateľské údaje: Basel MDPI AG 01.05.2023
    Vydané v Applied sciences (01.05.2023)
    “… This is achieved by establishing a multi-objective mixed-integer optimization scheduling model for PBS and solving the model using a state transition algorithm based on the greedy strategy…”
    Získať plný text
    Journal Article