Suchergebnisse - efficient Q‐learning based computation offloading algorithm

  1. 1

    Q-learning based computation offloading for multi-UAV-enabled cloud-edge computing networks von Wang, Meng, Shi, Shuo, Gu, Shushi, Gu, Xuemai, Qin, Xue

    ISSN: 1751-8628, 1751-8636
    Veröffentlicht: The Institution of Engineering and Technology 15.09.2020
    Veröffentlicht in IET communications (15.09.2020)
    “… Based on this framework, they formulate the computation …”
    Volltext
    Journal Article
  2. 2

    Joint computation offloading and task caching for multi-user and multi-task MEC systems: reinforcement learning-based algorithms von Elgendy, Ibrahim A., Zhang, Wei-Zhe, He, Hui, Gupta, Brij B., Abd El-Latif, Ahmed A.

    ISSN: 1022-0038, 1572-8196
    Veröffentlicht: New York Springer US 01.04.2021
    Veröffentlicht in Wireless networks (01.04.2021)
    “… Computation offloading at mobile edge computing (MEC) servers can mitigate the resource limitation and reduce the communication latency for mobile devices …”
    Volltext
    Journal Article
  3. 3

    Qlearningbased task offloading strategy for satellite edge computing von Shuai, Jiaqi, Xie, Bo, Cui, Haixia, Wang, Jiahuan, Wen, Weichang

    ISSN: 1074-5351, 1099-1131
    Veröffentlicht: Chichester Wiley Subscription Services, Inc 25.03.2024
    Veröffentlicht in International journal of communication systems (25.03.2024)
    “… To accomplish this goal, we also propose a Qlearningbased reinforcement learning offloading strategy in which both …”
    Volltext
    Journal Article
  4. 4

    CeCO: Cost-efficient Computation Offloading of IoT Applications in Green Industrial Fog Networks von Hazra, Abhishek, Amgoth, Tarachand

    ISSN: 1551-3203, 1941-0050
    Veröffentlicht: Piscataway IEEE 01.09.2022
    Veröffentlicht in IEEE transactions on industrial informatics (01.09.2022)
    “… To address this issue, we design a novel fog federation, a computation offloading framework for industrial networks called CeCO, where a master fog controller regulates the network and distributes …”
    Volltext
    Journal Article
  5. 5

    Learning for Computation Offloading in Mobile Edge Computing von Dinh, Thinh Quang, La, Quang Duy, Quek, Tony Q. S., Shin, Hyundong

    ISSN: 0090-6778, 1558-0857
    Veröffentlicht: New York IEEE 01.12.2018
    Veröffentlicht in IEEE transactions on communications (01.12.2018)
    “… ) at the edge of wireless networks. However, deploying MEC systems faces many challenges, one of which is to achieve an efficient distributed offloading mechanism for multiple users in time-varying wireless environments …”
    Volltext
    Journal Article
  6. 6

    A Heuristic Deep Q Learning for Offloading in Edge Devices in 5 g Networks von Dong, YanRu, Alwakeel, Ahmed M., Alwakeel, Mohammed M., Alharbi, Lubna A., Althubiti, Sara A

    ISSN: 1570-7873, 1572-9184
    Veröffentlicht: Dordrecht Springer Netherlands 01.09.2023
    Veröffentlicht in Journal of grid computing (01.09.2023)
    “… To overcome the issues of existing work, such as low latency, offloading and task scheduling, the proposed method provides efficient results …”
    Volltext
    Journal Article
  7. 7

    A walrus optimization algorithm for sustainable internet of robotic things based on Q-Learning von Varshney, Hirdesh, Singh, Avtar

    ISSN: 1573-0484, 0920-8542, 1573-0484
    Veröffentlicht: New York Springer US 14.10.2025
    Veröffentlicht in The Journal of supercomputing (14.10.2025)
    “… Therefore, the present work develops an efficient task offloading mechanism by considering a multi-objective optimization approach to reduce energy consumption based on sampling rate, transmission …”
    Volltext
    Journal Article
  8. 8

    Optimal Task Offloading and Trajectory Planning Algorithms for Collaborative Video Analytics With UAV-Assisted Edge in Disaster Rescue von Sun, Hui, Zhang, Xiuye, Zhang, Bo, Sha, Kewei, Shi, Weisong

    ISSN: 0018-9545, 1939-9359
    Veröffentlicht: New York IEEE 01.05.2024
    Veröffentlicht in IEEE transactions on vehicular technology (01.05.2024)
    “… To minimize the computational overhead of ECs during hovering and serving within a time slot, we present a new task offloading scheme based on the differential evolutionary algorithm …”
    Volltext
    Journal Article
  9. 9

    Single-Cell Multiuser Computation Offloading in Dynamic Pricing-Aided Mobile Edge Computing von Tao, Ming, Li, Xueqiang, Ota, Kaoru, Dong, Mianxiong

    ISSN: 2329-924X, 2373-7476
    Veröffentlicht: Piscataway IEEE 01.04.2024
    Veröffentlicht in IEEE Transactions on Computational Social Systems (01.04.2024)
    “… For multiuser in signal cell network with MEC, a dynamic pricing-based computation offloading solution is investigated in this article …”
    Volltext
    Journal Article
  10. 10

    Energy-Efficient Edge Caching and Task Deployment Algorithm Enabled by Deep Q-Learning for MEC von Ma, Li, Wang, Peng, Du, Chunlai, Li, Yang

    ISSN: 2079-9292, 2079-9292
    Veröffentlicht: Basel MDPI AG 01.12.2022
    Veröffentlicht in Electronics (Basel) (01.12.2022)
    “… Therefore, by jointly optimizing the strategies of task deployment, offloading decisions, edge cache and resource allocation, this paper aims to minimize the overall energy consumption of a mobile edge computing (MEC …”
    Volltext
    Journal Article
  11. 11

    MGCO: Mobility-Aware Generative Computation Offloading in Edge-Cloud Systems von Ghosh, Aswini, Sharma, Nelson, Mishra, Shivendu, Misra, Rajiv, Das, Sajal K.

    ISSN: 1939-1374, 2372-0204
    Veröffentlicht: IEEE 2025
    Veröffentlicht in IEEE transactions on services computing (2025)
    “… Mobility introduces significant challenges for optimal computation offloading, latency minimization, and efficient re source utilization in multi-access edge computing (MEC) systems …”
    Volltext
    Journal Article
  12. 12

    Computation Offloading Strategy for Autonomous Vehicles von Farimani, Mina Khoshbazm, Karimian-Aliabadi, Soroush, Entezari-Maleki, Reza

    Veröffentlicht: IEEE 23.02.2022
    “… This paper establishes a computation offloading strategy based on deep Q-learning algorithm for vehicular edge computing networks …”
    Volltext
    Tagungsbericht
  13. 13

    Computation Offloading for Workflow in Mobile Edge Computing Based on Deep Q-Learning von Zhu, Anqi, Guo, Songtao, Ma, Mingfang, Feng, Hao, Liu, Bei, Su, Xin, Guo, Minghong, Jiang, Qiucen

    ISSN: 2379-1276
    Veröffentlicht: IEEE 01.05.2019
    Veröffentlicht in Wireless and Optical Communication Conference (01.05.2019)
    “… The algorithm proposed formalizes the computation offloading problem into an energy and time optimization problem according to user experience, and obtains the optimal cost strategy on the basis of deep Q-learning (DQN …”
    Volltext
    Tagungsbericht
  14. 14

    Deep Reinforcement Learning for Energy-Efficient Computation Offloading in Mobile-Edge Computing von Zhou, Huan, Jiang, Kai, Liu, Xuxun, Li, Xiuhua, Leung, Victor C. M.

    ISSN: 2327-4662, 2327-4662
    Veröffentlicht: Piscataway IEEE 15.01.2022
    Veröffentlicht in IEEE internet of things journal (15.01.2022)
    “… Although the issues of computation offloading and resource allocation in MEC have been studied with different optimization objectives, they mainly focus on facilitating the performance …”
    Volltext
    Journal Article
  15. 15

    Dynamic Multi-user Computation Offloading for Mobile Edge Computing using Game Theory and Deep Reinforcement Learning von Teymoori, Peyvand, Boukerche, Azzedine

    ISSN: 1938-1883
    Veröffentlicht: IEEE 16.05.2022
    “… services at the edge of the wireless access network. To use the services provided by the MEC more effectively, making efficient and reasonable offloading decisions is crucial …”
    Volltext
    Tagungsbericht
  16. 16

    Time-and-Traffic-aware collaborative task offloading with service caching-replacement in cloud-assisted mobile edge computing von Chhabra, Gurpreet Singh, Satti, Satish Kumar, Rajareddy, Goluguri N. V., Mahapatra, Abhijeet, Lakshmeeswari, Gondi, Mishra, Kaushik

    ISSN: 1386-7857, 1573-7543
    Veröffentlicht: New York Springer US 01.11.2025
    Veröffentlicht in Cluster computing (01.11.2025)
    “… The rapid growth of Internet of Things (IoT) applications has increased the demand for ultra-low-latency and energy-efficient computing …”
    Volltext
    Journal Article
  17. 17

    Deep Learning Empowered Task Offloading for Mobile Edge Computing in Urban Informatics von Zhang, Ke, Zhu, Yongxu, Leng, Supeng, He, Yejun, Maharjan, Sabita, Zhang, Yan

    ISSN: 2327-4662, 2327-4662
    Veröffentlicht: Piscataway IEEE 01.10.2019
    Veröffentlicht in IEEE internet of things journal (01.10.2019)
    “… To cope with this challenge, we adopt a deep Q-learning approach for designing optimal offloading schemes, jointly considering selection of target server …”
    Volltext
    Journal Article
  18. 18

    Task Offloading and Scheduling Based on Mobile Edge Computing and Software-defined Networking von Azeez Rawdhan, Fatimah

    ISSN: 1509-4553, 1899-8852
    Veröffentlicht: Warsaw Instytut Lacznosci - Panstwowy Instytut Badawczy (National Institute of Telecommunications) 2025
    “… This multi-objective optimization problem requires balancing the trade-offs between local execution on mobile devices and offloading tasks to edge servers, considering factors such as computation …”
    Volltext
    Journal Article
  19. 19

    D2D-Assisted Multi-User Cooperative Partial Offloading in MEC Based on Deep Reinforcement Learning von Guan, Xin, Lv, Tiejun, Lin, Zhipeng, Huang, Pingmu, Zeng, Jie

    ISSN: 1424-8220, 1424-8220
    Veröffentlicht: Basel MDPI AG 01.09.2022
    Veröffentlicht in Sensors (Basel, Switzerland) (01.09.2022)
    “… In this paper, we construct a D2D-MEC framework and study the multi-user cooperative partial offloading and computing resource allocation …”
    Volltext
    Journal Article
  20. 20

    Reinforcement Learning Based MEC Architecturewith Energy-Efficient Optimization for ARANs von He, Qiang, Lv, Yingjie, Zhen, Li, Yu, Keping

    ISSN: 1938-1883
    Veröffentlicht: IEEE 16.05.2022
    “… Besides, for environmental protection and cost reduction, we propose a Q-learning algorithm based on the improved …”
    Volltext
    Tagungsbericht