Suchergebnisse - convex linearly-constrained quadratic programming

  1. 1

    New variants of the criss-cross method for linearly constrained convex quadratic programming von Akkeleş, Arif A., Balogh, László, Illés, Tibor

    ISSN: 0377-2217, 1872-6860
    Veröffentlicht: Amsterdam Elsevier B.V 16.08.2004
    Veröffentlicht in European journal of operational research (16.08.2004)
    “… (with LIFO and most-often-selected-variable pivot rules) are generalized for linearly constrained convex primal …”
    Volltext
    Journal Article
  2. 2

    Sparsity-Aware Noise Subspace Fitting for DOA Estimation von Zheng, Chundi, Chen, Huihui, Wang, Aiguo

    ISSN: 1424-8220, 1424-8220
    Veröffentlicht: Switzerland MDPI AG 21.12.2019
    Veröffentlicht in Sensors (Basel, Switzerland) (21.12.2019)
    “… Our formulation leads to a convex linearly constrained quadratic programming (LCQP) problem that enjoys global convergence without the need of accurate initialization and can be easily solved by existing LCQP solvers …”
    Volltext
    Journal Article
  3. 3

    Finiteness of the quadratic primal simplex method when s-monotone index selection rules are applied von Csizmadia, Adrienn, Csizmadia, Zsolt, Illés, Tibor

    ISSN: 1435-246X, 1613-9178
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2018
    Veröffentlicht in Central European journal of operations research (01.09.2018)
    “… This paper considers the primal quadratic simplex method for linearly constrained convex quadratic programming problems …”
    Volltext
    Journal Article
  4. 4

    A successive domain-reduction scheme for linearly constrained quadratic integer programming problems von Wang, Fenlan

    ISSN: 0160-5682, 1476-9360
    Veröffentlicht: Taylor & Francis 03.10.2021
    Veröffentlicht in The Journal of the Operational Research Society (03.10.2021)
    “… A new exact solution method is developed in this paper for solving nonseparable linearly constrained quadratic integer programming problems with convex, concave or indefinite objective functions …”
    Volltext
    Journal Article
  5. 5

    Convergence analysis of generalized ADMM with majorization for linearly constrained composite convex optimization von Li, Hongwu, Zhang, Haibin, Xiao, Yunhai, Li, Peili

    ISSN: 1862-4472, 1862-4480
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2024
    Veröffentlicht in Optimization letters (01.06.2024)
    “… The generalized alternating direction method of multipliers (ADMM) of Xiao et al. (Math Prog Comput 10:533–555, 2018) aims at the two-block linearly constrained composite convex programming problem, in which each block is in the …”
    Volltext
    Journal Article
  6. 6

    Interior algorithms for linear, quadratic, and linearly constrained convex programming von Ye, Yinyu

    ISBN: 9798207466361
    Veröffentlicht: ProQuest Dissertations & Theses 01.01.1988
    “… : convex quadratic and linearly constrained convex programs. These algorithms are polynomial-time algorithms if the objective function is convex quadratic …”
    Volltext
    Dissertation
  7. 7

    An interior point-proximal method of multipliers for convex quadratic programming von Pougkakiotis, Spyridon, Gondzio, Jacek

    ISSN: 0926-6003, 1573-2894
    Veröffentlicht: New York Springer US 01.03.2021
    Veröffentlicht in Computational optimization and applications (01.03.2021)
    “… ). The resulting algorithm (IP-PMM) is interpreted as a primal-dual regularized IPM, suitable for solving linearly constrained convex quadratic programming problems …”
    Volltext
    Journal Article
  8. 8

    An Inexact Accelerated Proximal Gradient Method for Large Scale Linearly Constrained Convex SDP von Jiang, Kaifeng, Sun, Defeng, Toh, Kim-Chuan

    ISSN: 1052-6234, 1095-7189
    Veröffentlicht: Philadelphia Society for Industrial and Applied Mathematics 01.01.2012
    Veröffentlicht in SIAM journal on optimization (01.01.2012)
    “… The accelerated proximal gradient (APG) method, first proposed by Nesterov for minimizing smooth convex functions, later extended by Beck and Teboulle to composite convex objective functions, and studied in a unifying manner by Tseng …”
    Volltext
    Journal Article
  9. 9

    Inverse optimization for linearly constrained convex separable programming problems von Zhang, Jianzhong, Xu, Chengxian

    ISSN: 0377-2217, 1872-6860
    Veröffentlicht: Amsterdam Elsevier B.V 01.02.2010
    Veröffentlicht in European journal of operational research (01.02.2010)
    “… In this paper, we study inverse optimization for linearly constrained convex separable programming problems that have wide applications in industrial and managerial areas …”
    Volltext
    Journal Article
  10. 10

    On the Convergence Properties of a Majorized Alternating Direction Method of Multipliers for Linearly Constrained Convex Optimization Problems with Coupled Objective Functions von Cui, Ying, Li, Xudong, Sun, Defeng, Toh, Kim-Chuan

    ISSN: 0022-3239, 1573-2878
    Veröffentlicht: New York Springer US 01.06.2016
    Veröffentlicht in Journal of optimization theory and applications (01.06.2016)
    “… In this paper, we establish the convergence properties for a majorized alternating direction method of multipliers for linearly constrained convex optimization problems, whose objectives contain coupled functions …”
    Volltext
    Journal Article
  11. 11

    The Boosted DC Algorithm for Linearly Constrained DC Programming von Aragón-Artacho, F. J., Campoy, R., Vuong, P. T.

    ISSN: 1877-0533, 1877-0541
    Veröffentlicht: Dordrecht Springer Netherlands 01.12.2022
    Veröffentlicht in Set-valued and variational analysis (01.12.2022)
    “… The Boosted Difference of Convex functions Algorithm (BDCA) has been recently introduced to accelerate the performance of the classical Difference of Convex functions Algorithm (DCA …”
    Volltext
    Journal Article
  12. 12

    An efficient adaptive accelerated inexact proximal point method for solving linearly constrained nonconvex composite problems von Kong, Weiwei, Melo, Jefferson G., Monteiro, Renato D. C.

    ISSN: 0926-6003, 1573-2894
    Veröffentlicht: New York Springer US 01.06.2020
    Veröffentlicht in Computational optimization and applications (01.06.2020)
    “… This paper proposes an efficient adaptive variant of a quadratic penalty accelerated inexact proximal point (QP-AIPP …”
    Volltext
    Journal Article
  13. 13

    A primal majorized semismooth Newton-CG augmented Lagrangian method for large-scale linearly constrained convex programming von Wang, Chengjing, Tang, Peipei

    ISSN: 0926-6003, 1573-2894
    Veröffentlicht: New York Springer US 01.12.2017
    Veröffentlicht in Computational optimization and applications (01.12.2017)
    “… In this paper, we propose a primal majorized semismooth Newton-CG augmented Lagrangian method for large-scale linearly constrained convex programming problems, especially for some difficult problems …”
    Volltext
    Journal Article
  14. 14

    Primal-Dual Relationship Between Levenberg–Marquardt and Central Trajectories for Linearly Constrained Convex Optimization von Behling, Roger, Gonzaga, Clovis, Haeser, Gabriel

    ISSN: 0022-3239, 1573-2878
    Veröffentlicht: Boston Springer US 01.09.2014
    Veröffentlicht in Journal of optimization theory and applications (01.09.2014)
    “… –Marquardt trajectory and eventually moves to the central path. Our main theorem is particularly relevant in quadratic programming, where points on the primal-dual Levenberg …”
    Volltext
    Journal Article
  15. 15

    Fast algorithm for singly linearly constrained quadratic programs with box-like constraints von Liu, Meijiao, Liu, Yong-Jin

    ISSN: 0926-6003, 1573-2894
    Veröffentlicht: New York Springer US 01.03.2017
    Veröffentlicht in Computational optimization and applications (01.03.2017)
    “… This paper focuses on a singly linearly constrained class of convex quadratic programs with box-like constraints …”
    Volltext
    Journal Article
  16. 16

    A coordinate gradient descent method for linearly constrained smooth optimization and support vector machines training von Tseng, Paul, Yun, Sangwoon

    ISSN: 0926-6003, 1573-2894
    Veröffentlicht: Boston Springer US 01.10.2010
    Veröffentlicht in Computational optimization and applications (01.10.2010)
    “… ) with bound constraints and a single linear equality constraint. We propose a (block) coordinate gradient descent method for solving this problem and, more generally, linearly constrained smooth optimization …”
    Volltext
    Journal Article
  17. 17

    A quadratically convergent semismooth Newton method for nonlinear semidefinite programming without generalized Jacobian regularity von Feng, Fuxiaoyue, Ding, Chao, Li, Xudong

    ISSN: 0025-5610, 1436-4646
    Veröffentlicht: Heidelberg Springer Nature B.V 05.02.2025
    Veröffentlicht in Mathematical programming (05.02.2025)
    “… We introduce a quadratically convergent semismooth Newton method for nonlinear semidefinite programming that eliminates the need for the generalized Jacobian regularity, a common yet stringent …”
    Volltext
    Journal Article
  18. 18

    Preconditioning Indefinite Systems in Interior Point Methods for Optimization von Bergamaschi, Luca, Gondzio, Jacek, Zilli, Giovanni

    ISSN: 0926-6003, 1573-2894
    Veröffentlicht: New York Springer Nature B.V 01.07.2004
    Veröffentlicht in Computational optimization and applications (01.07.2004)
    “… Every Newton step in an interior-point method for optimization requires a solution of a symmetric indefinite system of linear equations. Most of today's codes …”
    Volltext
    Journal Article
  19. 19

    Feature matching using quasi-conformal maps von Wang, Chun-xue, Liu, Li-gang

    ISSN: 2095-9184, 2095-9230
    Veröffentlicht: Hangzhou Zhejiang University Press 01.05.2017
    “… We present a fully automatic method for finding geometrically consistent correspondences while discarding outliers from the candidate point matches in two …”
    Volltext
    Journal Article
  20. 20

    A fast global algorithm for singly linearly constrained separable binary quadratic program with partially identical parameters von Lu, Cheng, Wu, Junhao, Deng, Zhibin, Li, Shaoze

    ISSN: 1862-4472, 1862-4480
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2023
    Veröffentlicht in Optimization letters (01.04.2023)
    “… The singly linearly constrained separable binary quadratic programming problem (SLSBQP) has a wide variety of applications in practice …”
    Volltext
    Journal Article