Výsledky vyhledávání - conventional neural network-autoencoder architecture*

  • Zobrazuji výsledky 1 - 18 z 18
Upřesnit hledání
  1. 1

    A deep stacked random vector functional link network autoencoder for diagnosis of brain abnormalities and breast cancer Autor Nayak, Deepak Ranjan, Dash, Ratnakar, Majhi, Banshidhar, Pachori, Ram Bilas, Zhang, Yudong

    ISSN: 1746-8094, 1746-8108
    Vydáno: Elsevier Ltd 01.04.2020
    “… Almost all existing methods are designed using conventional machine…”
    Získat plný text
    Journal Article
  2. 2

    Deep convolutional autoencoder for radar-based classification of similar aided and unaided human activities Autor Seyfioglu, Mehmet Saygin, Ozbayoglu, Ahmet Murat, Gurbuz, Sevgi Zubeyde

    ISSN: 0018-9251, 1557-9603
    Vydáno: New York IEEE 01.08.2018
    “… This architecture is shown to be more effective than other deep learning architectures, such as convolutional neural networks and autoencoders, as well as conventional classifiers…”
    Získat plný text
    Journal Article
  3. 3

    Deep convolutional autoencoders for the time–space reconstruction of liquid rocket engine flames Autor Zapata Usandivaras, José F., Bauerheim, Michael, Cuenot, Bénédicte, Urbano, Annafederica

    ISSN: 1540-7489, 1540-7489
    Vydáno: Elsevier Inc 2024
    “… These methods promise to deliver where conventional linear techniques, such as Proper Orthogonal Decomposition (POD…”
    Získat plný text
    Journal Article
  4. 4

    High-speed Optical OFDM transmission by reducing the nonlinearity of LEDs in Visible light Communication Systems Autor Swaminathan, S., Raajan, N. R.

    ISSN: 1573-7721, 1380-7501, 1573-7721
    Vydáno: New York Springer US 01.05.2024
    Vydáno v Multimedia tools and applications (01.05.2024)
    “… function and network architecture, as opposed to the conventional fully computer-controlled autoencoder. Deep Recurrent Neural Network…”
    Získat plný text
    Journal Article
  5. 5

    Deep learning modelling techniques: current progress, applications, advantages, and challenges Autor Ahmed, Shams Forruque, Alam, Md. Sakib Bin, Hassan, Maruf, Rozbu, Mahtabin Rodela, Ishtiak, Taoseef, Rafa, Nazifa, Mofijur, M., Shawkat Ali, A. B. M., Gandomi, Amir H.

    ISSN: 0269-2821, 1573-7462
    Vydáno: Dordrecht Springer Netherlands 01.11.2023
    Vydáno v The Artificial intelligence review (01.11.2023)
    “… As a multidisciplinary field that is still in its nascent phase, articles that survey DL architectures encompassing the full scope of the field are rather limited…”
    Získat plný text
    Journal Article
  6. 6

    Predicting Freshman Recruitment Rates: A Comparative Analysis of Metropolitan and Non-Metropolitan Universities in South Korea Autor Jong Na, Hyung, Shin, Ha-Young, Cho, Yongsun

    ISSN: 2169-3536, 2169-3536
    Vydáno: Piscataway IEEE 2025
    Vydáno v IEEE access (2025)
    “…), Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), Autoencoders, and Transformer architectures-to predict freshman enrollment outcomes…”
    Získat plný text
    Journal Article
  7. 7

    Training deep neural networks for binary communication with the Whetstone method Autor Severa, William, Vineyard, Craig M., Dellana, Ryan, Verzi, Stephen J., Aimone, James B.

    ISSN: 2522-5839, 2522-5839
    Vydáno: London Nature Publishing Group UK 01.02.2019
    Vydáno v Nature machine intelligence (01.02.2019)
    “…The computational cost of deep neural networks presents challenges to broadly deploying these algorithms…”
    Získat plný text
    Journal Article
  8. 8

    A deep neural network approach to QRS detection using autoencoders Autor Belkadi, Mohamed Amine, Daamouche, Abdelhamid, Melgani, Farid

    ISSN: 0957-4174, 1873-6793
    Vydáno: New York Elsevier Ltd 01.12.2021
    Vydáno v Expert systems with applications (01.12.2021)
    “…In this paper, a stacked autoencoder deep neural network is proposed to extract the QRS complex from raw ECG signals without any conventional feature extraction phase…”
    Získat plný text
    Journal Article
  9. 9

    Functional autoencoder for smoothing and representation learning Autor Wu, Sidi, Beaulac, Cédric, Cao, Jiguo

    ISSN: 0960-3174, 1573-1375
    Vydáno: New York Springer US 01.12.2024
    Vydáno v Statistics and computing (01.12.2024)
    “… representations may not be sufficient. In this study, we propose to learn the nonlinear representations of functional data using neural network autoencoders designed to process data in the form it is usually collected without the need of preprocessing…”
    Získat plný text
    Journal Article
  10. 10

    Proposal of failure prediction method of factory equipment by vibration data with Recurrent Autoencoder Autor TAMURA, Satoshi, HAYAMIZU, Satoru, ISASHI, Ryosuke, NAITOU, Takayoshi, MATSUI, Ayaka, FURUKAWA, Akira, ASAHI, Shota

    ISSN: 2187-9761
    Vydáno: The Japan Society of Mechanical Engineers 01.10.2020
    “…In this paper, we propose a method to predict the failure of factory equipment by machine learning architectures using vibration data…”
    Získat plný text
    Journal Article
  11. 11
  12. 12

    Proposal of failure prediction method of factory equipment by vibration data with Recurrent Autoencoder Autor TAMURA, Satoshi, HAYAMIZU, Satoru, ISASHI, Ryosuke, NAITOU, Takayoshi, MATSUI, Ayaka, FURUKAWA, Akira, ASAHI, Shota

    ISSN: 2187-9761
    Vydáno: The Japan Society of Mechanical Engineers 2020
    “…In this paper, we propose a method to predict the failure of factory equipment by machine learning architectures using vibration data…”
    Získat plný text
    Journal Article
  13. 13

    Robust reduced-order machine learning modeling of high-dimensional nonlinear processes using noisy data Autor Tan, Wallace Gian Yion, Xiao, Ming, Wu, Zhe

    ISSN: 2772-5081, 2772-5081
    Vydáno: Elsevier Ltd 01.06.2024
    Vydáno v Digital Chemical Engineering (01.06.2024)
    “…). To address this issue, this work develops a novel machine-learning-based reduced-order modeling method by integrating SpectralDense layers into autoencoders and incorporating them with recurrent neural networks…”
    Získat plný text
    Journal Article
  14. 14

    Optimized intrusion detection in IoT and fog computing using ensemble learning and advanced feature selection Autor Tawfik, Mohammed

    ISSN: 1932-6203, 1932-6203
    Vydáno: United States Public Library of Science 01.08.2024
    Vydáno v PloS one (01.08.2024)
    “…The proliferation of Internet of Things (IoT) devices and fog computing architectures has introduced major security and cyber threats…”
    Získat plný text
    Journal Article
  15. 15

    Functional Autoencoder for Smoothing and Representation Learning Autor Wu, Sidi, Beaulac, Cédric, Cao, Jiguo

    ISSN: 2331-8422
    Vydáno: Ithaca Cornell University Library, arXiv.org 17.01.2024
    Vydáno v arXiv.org (17.01.2024)
    “… representations may not be sufficient. In this study, we propose to learn the nonlinear representations of functional data using neural network autoencoders designed to process data in the form it is usually collected without the need of preprocessing…”
    Získat plný text
    Paper
  16. 16

    A variational U‐Net for motion retargeting Autor Uk Kim, Seong, Jang, Hanyoung, Kim, Jongmin

    ISSN: 1546-4261, 1546-427X
    Vydáno: Chichester Wiley Subscription Services, Inc 01.07.2020
    Vydáno v Computer animation and virtual worlds (01.07.2020)
    “…Motion retargeting is the process of copying motion from one character (source) to another (target) when the source and target body sizes and proportions (of…”
    Získat plný text
    Journal Article
  17. 17

    A Multiscale Autoencoder (MSAE) Framework for End-to-End Neural Network Speech Enhancement Autor Borgstrom, Bengt J., Brandstein, Michael S.

    ISSN: 2329-9290, 2329-9304
    Vydáno: Piscataway IEEE 2024
    “… This paper proposes a multiscale autoencoder (MSAE) for mask-based end-to-end neural network speech enhancement…”
    Získat plný text
    Journal Article
  18. 18

    A Multiscale Autoencoder (MSAE) Framework for End-to-End Neural Network Speech Enhancement Autor Borgstrom, Bengt J, Brandstein, Michael S

    ISSN: 2331-8422
    Vydáno: Ithaca Cornell University Library, arXiv.org 21.09.2023
    Vydáno v arXiv.org (21.09.2023)
    “… This paper proposes a multiscale autoencoder (MSAE) for mask-based end-to-end neural network speech enhancement…”
    Získat plný text
    Paper