Suchergebnisse - adaptive Gaussian process regression algorithm

  1. 1

    A Personalized Dose‐Finding Algorithm Based on Adaptive Gaussian Process Regression von Park, Yeonhee, Chang, Won

    ISSN: 1539-1604, 1539-1612, 1539-1612
    Veröffentlicht: Chichester, UK John Wiley & Sons, Inc 01.11.2024
    “… To address this, we propose a personalized dose‐finding algorithm that assigns patients to individualized optimal biological doses …”
    Volltext
    Journal Article
  2. 2

    Operational optimization of copper flotation process based on the weighted Gaussian process regression and index-oriented adaptive differential evolution algorithm von Wang, Zhiqiang, He, Dakuo, Nie, Haotian

    ISSN: 1004-9541, 2210-321X
    Veröffentlicht: Elsevier B.V 01.02.2024
    Veröffentlicht in Chinese journal of chemical engineering (01.02.2024)
    “… Based on the analysis results of BN, a weighted Gaussian process regression model is constructed to predict the CCG that a higher …”
    Volltext
    Journal Article
  3. 3

    Study of a hull form optimization system based on a Gaussian process regression algorithm and an adaptive sampling strategy, Part I: Single-objective optimization von Wang, Penghui, Feng, Yukun, Chen, Zuogang, Dai, Yi

    ISSN: 0029-8018, 1873-5258
    Veröffentlicht: Elsevier Ltd 01.07.2023
    Veröffentlicht in Ocean engineering (01.07.2023)
    “… To mitigate these deficiencies, this paper first proposes a UQ method for the surrogate model based on a Gaussian process regression (GPR) algorithm …”
    Volltext
    Journal Article
  4. 4

    Study of a hull form optimization system based on a Gaussian process regression algorithm and an adaptive sampling strategy, Part II: Multi-objective optimization von Wang, Penghui, Feng, Yukun, Chen, Zuogang, Dai, Yi

    ISSN: 0029-8018, 1873-5258
    Veröffentlicht: Elsevier Ltd 15.10.2023
    Veröffentlicht in Ocean engineering (15.10.2023)
    “… Based on a Gaussian process regression (GPR) algorithm and an adaptive sampling strategy, the authors have developed a single-objective optimization system, SBO-MSE …”
    Volltext
    Journal Article
  5. 5

    Health prognostics of lithium-ion batteries based on universal voltage range features mining and adaptive multi-Gaussian process regression with Harris Hawks optimization algorithm von Guo, Yongfang, Yu, Xiangyuan, Wang, Yashuang, Huang, Kai

    ISSN: 0951-8320, 1879-0836
    Veröffentlicht: Elsevier Ltd 01.04.2024
    Veröffentlicht in Reliability engineering & system safety (01.04.2024)
    “… •An adaptive multi-Gaussian process regression with the Harris Hawks Optimization algorithm is proposed …”
    Volltext
    Journal Article
  6. 6

    Self-adaptive data-driven evolutionary algorithm based on random forest feature selection and incremental Gaussian process regression on personalized antidepressant medication research von Zhao, Ruxin, Zhang, Hongtan, Liu, Chang, Xie, Yulin, Cao, Yue, Shi, Yang

    ISSN: 0924-669X, 1573-7497
    Veröffentlicht: New York Springer US 01.08.2025
    Veröffentlicht in Applied intelligence (Dordrecht, Netherlands) (01.08.2025)
    “… We proposed a self-adaptive data-driven evolutionary algorithm based on random forest feature selection and incremental Gaussian process regression (SADDEA-RFFS-IGPR …”
    Volltext
    Journal Article
  7. 7

    Adaptive Gaussian Process Regression Based Remaining Useful Life Prediction of PEMFC Incorporating An Improved Health Indicator von Tang, Lin, Yang, Xu, Gao, JingJing, Huang, Jian, Cui, JiaRui

    ISSN: 2767-9861
    Veröffentlicht: IEEE 03.08.2022
    “… On this basis, a data-driven method, namely the adaptive Gaussian process regression(GPR) method, is proposed to predict the RUL of PEMFC …”
    Volltext
    Tagungsbericht
  8. 8

    Approximate high mode coupling potentials using Gaussian process regression and adaptive density guided sampling von Schmitz, Gunnar, Artiukhin, Denis G, Christiansen, Ove

    ISSN: 1089-7690, 1089-7690
    Veröffentlicht: United States 07.04.2019
    Veröffentlicht in The Journal of chemical physics (07.04.2019)
    “… guided approach with Gaussian process regression for constructing approximate higher-order mode potentials …”
    Weitere Angaben
    Journal Article
  9. 9

    A Gaussian Process Regression-based robust solution for the narrow-band vibration noise with low-cost UAV von Tian, Junxi, Yang, Ming, Zhou, Zebo, Chao, Tao

    ISSN: 0263-2241
    Veröffentlicht: Elsevier Ltd 15.05.2025
    “… ) and the dominant frequency of the vibration noise is established using Gaussian Process Regression (GPR …”
    Volltext
    Journal Article
  10. 10

    Gaussian processes retrieval of leaf parameters from a multi-species reflectance, absorbance and fluorescence dataset von Van Wittenberghe, Shari, Verrelst, Jochem, Rivera, Juan Pablo, Alonso, Luis, Moreno, José, Samson, Roeland

    ISSN: 1011-1344, 1873-2682, 1873-2682
    Veröffentlicht: Switzerland 05.05.2014
    “… Parameter retrieval was conducted with the machine learning regression algorithm Gaussian …”
    Volltext
    Journal Article
  11. 11

    Comparison of hybrid machine learning methods for the prediction of short-term meteorological droughts of Sakarya Meteorological Station in Turkey von Citakoglu, Hatice, Coşkun, Ömer

    ISSN: 0944-1344, 1614-7499, 1614-7499
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2022
    “… (ANNs), adaptive neuro-fuzzy inference system (ANFIS), Gaussian process regression (GPR), support vector machine regression …”
    Volltext
    Journal Article
  12. 12

    Evaluating the predictive power of sun-induced chlorophyll fluorescence to estimate net photosynthesis of vegetation canopies: A SCOPE modeling study von Verrelst, Jochem, van der Tol, Christiaan, Magnani, Federico, Sabater, Neus, Rivera, Juan Pablo, Mohammed, Gina, Moreno, Jose

    ISSN: 0034-4257, 1879-0704
    Veröffentlicht: Elsevier Inc 01.04.2016
    Veröffentlicht in Remote sensing of environment (01.04.2016)
    “… ) for various canopy configurations. Regression analysis between SIF retrievals and NPC values produced the following general findings: (1 …”
    Volltext
    Journal Article
  13. 13

    Pixel-level parameter optimization of a terrestrial biosphere model for improving estimation of carbon fluxes with an efficient model–data fusion method and satellite-derived LAI and GPP data von Ma, Rui, Xiao, Jingfeng, Liang, Shunlin, Ma, Han, He, Tao, Guo, Da, Liu, Xiaobang, Lu, Haibo

    ISSN: 1991-9603, 1991-959X, 1991-962X, 1991-9603, 1991-962X
    Veröffentlicht: Katlenburg-Lindau Copernicus GmbH 02.09.2022
    Veröffentlicht in Geoscientific Model Development (02.09.2022)
    “… Inaccurate parameter estimation is a significant source of uncertainty in complex terrestrial biosphere models. Model parameters may have large spatial …”
    Volltext
    Journal Article
  14. 14

    Development of Predictive QSAR Models of 4‐Thiazolidinones Antitrypanosomal Activity Using Modern Machine Learning Algorithms von Kryshchyshyn, Anna, Devinyak, Oleg, Kaminskyy, Danylo, Grellier, Philippe, Lesyk, Roman

    ISSN: 1868-1743, 1868-1751, 1868-1751
    Veröffentlicht: Germany Wiley Subscription Services, Inc 01.05.2018
    Veröffentlicht in Molecular informatics (01.05.2018)
    “… The performance of four machine learning algorithms: Random Forest regression, Stochastic gradient boosting, Multivariate adaptive regression splines and Gaussian processes regression have been studied in order to reach better levels of predictivity …”
    Volltext
    Journal Article
  15. 15

    Active learning for prediction of tensile properties for material extrusion additive manufacturing von Nasrin, Tahamina, Pourali, Masoumeh, Pourkamali-Anaraki, Farhad, Peterson, Amy M.

    ISSN: 2045-2322, 2045-2322
    Veröffentlicht: London Nature Publishing Group UK 15.07.2023
    Veröffentlicht in Scientific reports (15.07.2023)
    “… An adaptive data generation technique, specifically an active learning process based on the Gaussian process regression algorithm, was employed to enable prediction with limited training data …”
    Volltext
    Journal Article
  16. 16

    Nonparametric modeling of ship maneuvering motion based on Gaussian process regression optimized by genetic algorithm von Ouyang, Zi-Lu, Zou, Zao-Jian

    ISSN: 0029-8018, 1873-5258
    Veröffentlicht: Elsevier Ltd 15.10.2021
    Veröffentlicht in Ocean engineering (15.10.2021)
    “… A novel method, Gaussian process regression optimized by genetic algorithm (GA-GPR), is proposed for nonparametric modeling of ship maneuvering motion …”
    Volltext
    Journal Article
  17. 17

    ARS-Flow 2.0: An enhanced design space exploration flow for accelerator-rich system based on active learning von Huang, Shuaibo, Ye, Yuyang, Yan, Hao, Shi, Longxing

    ISSN: 0167-9260
    Veröffentlicht: Elsevier B.V 01.03.2025
    Veröffentlicht in Integration (Amsterdam) (01.03.2025)
    “… This method features particle-swarm-optimized Gaussian process regression modeling (PSOGPR), a multiobjective genetic algorithm with self-adaptive hyperparameter control (SAMOGA …”
    Volltext
    Journal Article
  18. 18

    Hyperspectral Prediction Model of Nitrogen Content in Citrus Leaves Based on the CEEMDAN–SR Algorithm von Gao, Changlun, Tang, Ting, Wu, Weibin, Zhang, Fangren, Luo, Yuanqiang, Wu, Weihao, Yao, Beihuo, Li, Jiehao

    ISSN: 2072-4292, 2072-4292
    Veröffentlicht: Basel MDPI AG 01.10.2023
    Veröffentlicht in Remote sensing (Basel, Switzerland) (01.10.2023)
    “… preprocessing algorithm, complete ensemble empirical mode decomposition with adaptive noise joint sparse representation (CEEMDAN–SR …”
    Volltext
    Journal Article
  19. 19

    Ship heading and trajectory control method based on L1-GPR von Shijie LI, Jiawei HE, Jialun LIU, Taixu LIU, Chengqi XU

    ISSN: 1673-3185
    Veröffentlicht: Editorial Office of Chinese Journal of Ship Research 01.02.2025
    Veröffentlicht in Zhongguo Jianchuan Yanjiu (01.02.2025)
    “… MethodsBased on an L1 adaptive control algorithm and Gaussian process regression (GPR) model, an L1 adaptive controller combined with a GPR model controller …”
    Volltext
    Journal Article
  20. 20

    Fault detection for Li-ion batteries of electric vehicles with segmented regression method von Bin Kaleem, Muaaz, Zhou, Yun, Jiang, Fu, Liu, Zhijun, Li, Heng

    ISSN: 2045-2322, 2045-2322
    Veröffentlicht: London Nature Publishing Group UK 30.12.2024
    Veröffentlicht in Scientific reports (30.12.2024)
    “… Current regression methods for battery fault detection often analyze charging and discharging as a single continuous process, missing important phase differences …”
    Volltext
    Journal Article