Suchergebnisse - Working with challenging data: Complex data, models and formats

  1. 1

    Enhanced interpretation of novel datasets by summarizing clustering results using deep-learning based linguistic models von K, Natarajan, Verma, Srikar, Kumar, Dheeraj

    ISSN: 0924-669X, 1573-7497
    Veröffentlicht: Boston Springer Nature B.V 01.04.2025
    Veröffentlicht in Applied intelligence (Dordrecht, Netherlands) (01.04.2025)
    “… ’ essential characteristics, developing complex statistical models, and testing various hypotheses …”
    Volltext
    Journal Article
  2. 2

    8.P. Skills building seminar: Design thinking: adopting a human-centred approach to tackling complex problems

    ISSN: 1101-1262, 1464-360X
    Veröffentlicht: Oxford Oxford University Press 21.10.2022
    Veröffentlicht in European journal of public health (21.10.2022)
    “… ’. Homelessness is a complex global public health challenge, with limited reliable prevalence data and no universally agreed definition …”
    Volltext
    Journal Article
  3. 3

    Data-dependent visualization of biological networks in the web-browser with NDExEdit von Auer, Florian, Mayer, Simone, Kramer, Frank

    ISSN: 1553-7358, 1553-734X, 1553-7358
    Veröffentlicht: United States Public Library of Science 01.06.2022
    Veröffentlicht in PLoS computational biology (01.06.2022)
    “… A further challenge when working with networks is their distribution. Within a typical collaborative workflow, even slight changes of the network data force one to repeat the visualization …”
    Volltext
    Journal Article
  4. 4

    Extracting Information from Unstructured Medical Reports Written in Minority Languages: A Case Study of Finnish von Myllylä, Elisa, Siirtola, Pekka, Isosalo, Antti, Reponen, Jarmo, Tamminen, Satu, Laatikainen, Outi

    ISSN: 2306-5729, 2306-5729
    Veröffentlicht: Basel MDPI AG 01.07.2025
    Veröffentlicht in Data (Basel) (01.07.2025)
    “… In the era of digital healthcare, electronic health records generate vast amounts of data, much of which is unstructured, and therefore, not in a usable format for conventional machine learning …”
    Volltext
    Journal Article
  5. 5

    Struc-Bench: Are Large Language Models Really Good at Generating Complex Structured Data? von Tang, Xiangru, Zong, Yiming, Phang, Jason, Zhao, Yilun, Zhou, Wangchunshu, Cohan, Arman, Gerstein, Mark

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 04.04.2024
    Veröffentlicht in arXiv.org (04.04.2024)
    “… Despite the remarkable capabilities of Large Language Models (LLMs) like GPT-4, producing complex, structured tabular data remains challenging …”
    Volltext
    Paper
  6. 6

    High Dimensional and Complex Spectrometric Data Analysis of an Organic Compound using Large Multimodal Models and Chained Outputs

    ISSN: 2573-2293
    Veröffentlicht: Washington American Chemical Society 12.09.2024
    Veröffentlicht in ChemRxiv (12.09.2024)
    “… Here, a challenging 15 carbon molecule problem with 13 complex and high dimensional chemical spectra were analyzed as images by unmodified versions of Claude …”
    Volltext
    Paper
  7. 7

    Enhanced interpretation of novel datasets by summarizing clustering results using deep-learning based linguistic models: Enhanced interpretation of novel datasets by summarizing von K, Natarajan, Verma, Srikar, Kumar, Dheeraj

    ISSN: 0924-669X, 1573-7497
    Veröffentlicht: New York Springer US 01.04.2025
    Veröffentlicht in Applied intelligence (Dordrecht, Netherlands) (01.04.2025)
    “… ’ essential characteristics, developing complex statistical models, and testing various hypotheses …”
    Volltext
    Journal Article
  8. 8

    Structured information extraction from complex scientific text with fine-tuned large language models von Dunn, Alexander, Dagdelen, John, Walker, Nicholas, Lee, Sanghoon, Rosen, Andrew S, Ceder, Gerbrand, Persson, Kristin, Jain, Anubhav

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 10.12.2022
    Veröffentlicht in arXiv.org (10.12.2022)
    “… Intelligently extracting and linking complex scientific information from unstructured text is a challenging endeavor particularly for those inexperienced with natural language processing …”
    Volltext
    Paper
  9. 9

    Work-Related Psychosocial Demands and Resources in General Practice Teams in Germany. A Team-Based Ethnography von Tsarouha, Elena, Preiser, Christine, Weltermann, Birgitta, Junne, Florian, Seifried-Dübon, Tanja, Stuber, Felicitas, Hartmann, Sigrid, Wittich, Andrea, Rieger, Monika A., Rind, Esther

    ISSN: 1660-4601, 1661-7827, 1660-4601
    Veröffentlicht: Switzerland MDPI AG 28.09.2020
    “… General practices are established microenterprises in Germany providing a variety of preventive and therapeutic health care services and procedures in a challenging working environment …”
    Volltext
    Journal Article
  10. 10

    A Systematic Survey on Instructional Text: From Representation Formats to Downstream NLP Tasks von Safa, Abdulfattah, Kapanadze, Tamta, Uzunoğlu, Arda, Gözde Gül \c{S}ahin

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 30.10.2024
    Veröffentlicht in arXiv.org (30.10.2024)
    “… However, real-world tasks often involve complex, multi-step instructions that remain challenging for current NLP systems …”
    Volltext
    Paper
  11. 11

    Game Physics von Eberly, David H.

    ISBN: 9780123749031, 0123749034
    Veröffentlicht: Burlington, Mass CRC Press 2010
    “… Dave Eberly's much anticipated sequel to his cornerstone resource on the mathematics associated with game physics …”
    Volltext
    E-Book Buch
  12. 12

    SfM Photogrammetry for Cost-Effective 3D Documentation and Rock Art Analysis of the Dombate Dolmen (Spain) and the Megalithic Sites of Chã dos Cabanos and Chã da Escusalha (Portugal) von Peña-Villasenín, Simón, Gil-Docampo, Mariluz, Ortiz-Sanz, Juan, Vilas Boas, Luciano, Bettencourt, Ana M. S., Cabanas, Manés F.

    ISSN: 2072-4292, 2072-4292
    Veröffentlicht: Basel MDPI AG 01.09.2024
    Veröffentlicht in Remote sensing (Basel, Switzerland) (01.09.2024)
    “… ) models from a set of overlapping images captured from disparate angles. The application of this technique in the field of cultural heritage, particularly …”
    Volltext
    Journal Article
  13. 13

    Exploring the Potential of Data-Driven Spatial Audio Enhancement Using a Single-Channel Model von dos Santos, Arthur N, Masiero, Bruno S, Mateus, Túlio C L

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 22.04.2024
    Veröffentlicht in arXiv.org (22.04.2024)
    “… are considerably more challenging in the latter case. Additionally, with limited computational resources, it is cumbersome to train models that require the management of larger datasets or those with more complex designs …”
    Volltext
    Paper
  14. 14

    Panoptic Segmentation Meets Remote Sensing von Osmar Luiz Ferreira de Carvalho, Osmar Abílio de Carvalho Júnior, Silva, Cristiano Rosa e, Anesmar Olino de Albuquerque, Nickolas Castro Santana, Dibio Leandro Borges, Roberto Arnaldo Trancoso Gomes, Renato Fontes Guimarães

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 30.11.2021
    Veröffentlicht in arXiv.org (30.11.2021)
    “… Effectively approaching panoptic segmentation in remotely sensed data can be auspicious in many challenging problems since it allows continuous mapping and specific target counting …”
    Volltext
    Paper
  15. 15

    Co-Learning of Task and Sensor Placement for Soft Robotics von Spielberg, Andrew, Amini, Alexander, Chin, Lillian, Matusik, Wojciech, Rus, Daniela

    ISSN: 2377-3766, 2377-3766
    Veröffentlicht: Piscataway IEEE 01.04.2021
    Veröffentlicht in IEEE robotics and automation letters (01.04.2021)
    “… Reconstructing the robot's state from these sparse inputs is challenging, especially since sensor location has a profound downstream impact on the richness of learned models for robotic tasks …”
    Volltext
    Journal Article
  16. 16

    Efficient Information Sharing in ICT Supply Chain Social Network via Table Structure Recognition von Xiao, Bin, Akkaya, Yakup, Simsek, Murat, Kantarci, Burak, Ala Abu Alkheir

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 03.11.2022
    Veröffentlicht in arXiv.org (03.11.2022)
    “… because of human readability. However, with the surging number of electronic documents, it has been far beyond the capacity of human readers, and it is also challenging to process tabular data automatically because of the complex …”
    Volltext
    Paper
  17. 17

    Integration of heterogeneous biological data in multiscale mechanistic model calibration: application to lung adenocarcinoma von Jean-Louis Palgen, Perrillat-Mercerot, Angelique, Ceres, Nicoletta, Peyronnet, Emmanuel, Coudron, Matthieu, Tixier, Eliott, Illigens, Ben Mw, Bosley, Jim, L'hostis, Adele, Monteiro, Claudio

    ISSN: 2692-8205, 2692-8205
    Veröffentlicht: Cold Spring Harbor Cold Spring Harbor Laboratory Press 20.01.2022
    Veröffentlicht in bioRxiv (20.01.2022)
    “… Determining parameters and their values is particularly challenging in the case of models of pathophysiology, for which data for calibration is sparse …”
    Volltext
    Paper
  18. 18

    BanglaCoNER: Towards Robust Bangla Complex Named Entity Recognition von Shahgir, HAZ Sameen, Alam, Ramisa, Md Zarif Ul Alam

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 17.03.2023
    Veröffentlicht in arXiv.org (17.03.2023)
    “… CNER is a more challenging task than traditional NER as it involves identifying and classifying complex and compound entities, which are not common in Bangla language …”
    Volltext
    Paper
  19. 19

    AIR-Bench: Benchmarking Large Audio-Language Models via Generative Comprehension von Yang, Qian, Xu, Jin, Liu, Wenrui, Chu, Yunfei, Jiang, Ziyue, Zhou, Xiaohuan, Leng, Yichong, Lv, Yuanjun, Zhou, Zhao, Zhou, Chang, Zhou, Jingren

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 26.07.2024
    Veröffentlicht in arXiv.org (26.07.2024)
    “… ), and lack an assessment of the open-ended generative capabilities centered around audio. Thus, it is challenging to track the progression in the Large Audio-Language Models (LALMs …”
    Volltext
    Paper
  20. 20

    Temporal Reasoning Transfer from Text to Video von Li, Lei, Liu, Yuanxin, Yao, Linli, Zhang, Peiyuan, An, Chenxin, Wang, Lean, Xu, Sun, Kong, Lingpeng, Liu, Qi

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 08.10.2024
    Veröffentlicht in arXiv.org (08.10.2024)
    “… Video Large Language Models (Video LLMs) have shown promising capabilities in video comprehension, yet they struggle with tracking temporal changes and reasoning about temporal relationships …”
    Volltext
    Paper