Suchergebnisse - Time Series Microarray Data Clustering
-
1
Bayesian hierarchical clustering for microarray time series data with replicates and outlier measurements
ISSN: 1471-2105, 1471-2105Veröffentlicht: London BioMed Central 13.10.2011Veröffentlicht in BMC bioinformatics (13.10.2011)“… Results We present a generative model-based Bayesian hierarchical clustering algorithm for microarray time series that employs Gaussian process regression to capture the structure of the data …”
Volltext
Journal Article -
2
Multiple gene expression profile alignment for microarray time-series data clustering
ISSN: 1367-4803, 1367-4811, 1460-2059, 1367-4811Veröffentlicht: Oxford Oxford University Press 15.09.2010Veröffentlicht in Bioinformatics (15.09.2010)“… A few methods have been proposed recently for clustering microarray time-series, which take the temporal dimension of the data into account …”
Volltext
Journal Article -
3
Hierarchical signature clustering for time series microarray data
ISSN: 0065-2598Veröffentlicht: United States 2011Veröffentlicht in Advances in experimental medicine and biology (2011)“… Existing clustering techniques provide clusters from time series microarray data, but the distance metrics used lack interpretability for these types of data …”
Weitere Angaben
Journal Article -
4
Alignment versus variation methods for clustering microarray time-series data
ISBN: 1424469090, 9781424469093ISSN: 1089-778XVeröffentlicht: IEEE 01.07.2010Veröffentlicht in IEEE Congress on Evolutionary Computation (01.07.2010)“… In the past few years, it has been shown that traditional clustering methods do not necessarily perform well on time-series data because of the temporal relationships involved in such data …”
Volltext
Tagungsbericht -
5
A novel pattern based clustering methodology for time-series microarray data
ISSN: 0020-7160, 1029-0265Veröffentlicht: Taylor & Francis 01.05.2007Veröffentlicht in International journal of computer mathematics (01.05.2007)“… Traditional clustering techniques are generally based on overall similarity of expression levels and often generate clusters with mixed profile patterns …”
Volltext
Journal Article -
6
Interpolation based consensus clustering for gene expression time series
ISSN: 1471-2105, 1471-2105Veröffentlicht: London BioMed Central 16.04.2015Veröffentlicht in BMC bioinformatics (16.04.2015)“… Background Unsupervised analyses such as clustering are the essential tools required to interpret time-series expression data from microarray …”
Volltext
Journal Article -
7
Enrichment constrained time dependent clustering analysis of time series microarray data
ISBN: 054967618X, 9780549676188Veröffentlicht: ProQuest Dissertations & Theses 01.01.2008“… This thesis investigates a new clustering algorithm for time series microarray data analysis …”
Volltext
Dissertation -
8
Microarray Time-Series Data Clustering Using Rough-Fuzzy C-Means Algorithm
ISBN: 1457717999, 9781457717994Veröffentlicht: IEEE 01.11.2011Veröffentlicht in 2011 IEEE International Conference on Bioinformatics and Biomedicine (01.11.2011)“… Clustering is one of the important analysis in functional genomics that discovers groups of co-expressed genes from microarray data …”
Volltext
Tagungsbericht -
9
Microarray time-series data clustering via gene expression profile alignment
ISBN: 9780494627112, 0494627115Veröffentlicht: ProQuest Dissertations & Theses 01.01.2010“… The proposed approach with flat clustering algorithms like k-means and EM are shown to cluster microarray time-series profiles efficiently and reduce the computational time significantly …”
Volltext
Dissertation -
10
Enrichment constrained time-dependent clustering analysis for finding meaningful temporal transcription modules
ISSN: 1367-4803, 1367-4811, 1460-2059, 1367-4811Veröffentlicht: Oxford Oxford University Press 15.06.2009Veröffentlicht in Bioinformatics (15.06.2009)“… Motivation: Clustering is a popular data exploration technique widely used in microarray data analysis …”
Volltext
Journal Article -
11
Accelerating Bayesian Hierarchical Clustering of Time Series Data with a Randomised Algorithm
ISSN: 1932-6203, 1932-6203Veröffentlicht: United States Public Library of Science 02.04.2013Veröffentlicht in PloS one (02.04.2013)“… BHC is a general method for clustering any discretely sampled time series data. In this paper we focus on a particular application to microarray gene expression data …”
Volltext
Journal Article -
12
Clustering microarray time-series data using expectation maximization and multiple profile alignment
ISBN: 1424451213, 9781424451210Veröffentlicht: IEEE 01.11.2009Veröffentlicht in 2009 IEEE International Conference on Bioinformatics and Biomedicine Workshop (01.11.2009)“… clusters are very different. In this direction, clustering microarray time-series data via pairwise alignment of piece-wise linear profiles has been recently introduced …”
Volltext
Tagungsbericht -
13
New approaches to clustering microarray time-series data using multiple expression profile alignment
ISBN: 9781424467662, 1424467667Veröffentlicht: IEEE 01.05.2010Veröffentlicht in 2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (01.05.2010)“… An important process in functional genomic studies is clustering microarray time-series data, where genes with similar expression profiles are expected to be functionally related …”
Volltext
Tagungsbericht -
14
TimeClust: a clustering tool for gene expression time series
ISSN: 1367-4803, 1367-4811, 1460-2059, 1367-4811Veröffentlicht: Oxford Oxford University Press 01.02.2008Veröffentlicht in Bioinformatics (01.02.2008)“… It can be conveniently used to analyze data obtained from DNA microarray time-course experiments …”
Volltext
Journal Article -
15
Clustering algorithms for time series gene expression in microarray data
ISBN: 1303000652, 9781303000652Veröffentlicht: ProQuest Dissertations & Theses 01.01.2012“… Clustering techniques are important for gene expression data analysis. However, efficient computational algorithms for clustering time-series data are still lacking …”
Volltext
Dissertation -
16
A cluster merging method for time series microarray with production values
ISSN: 0129-0657, 1793-6462, 1793-6462Veröffentlicht: Singapore 01.09.2014Veröffentlicht in International journal of neural systems (01.09.2014)“… A challenging task in time-course microarray data analysis is to cluster genes meaningfully combining the information provided by multiple replicates covering the same key time points …”
Weitere Angaben
Journal Article -
17
Dynamic modeling of gene expression in prokaryotes: application to glucose-lactose diauxie in Escherichia coli
ISSN: 1872-5325, 1872-5333, 1872-5333Veröffentlicht: Dordrecht Springer Netherlands 01.06.2011Veröffentlicht in Systems and synthetic biology (01.06.2011)“… ) based solely on data from DNA microarray time series. Clustering of genes with similar expression profiles allows for a course-grained view of the GRN and a probabilistic determination of the connectivity among the clusters …”
Volltext
Journal Article -
18
Gene clustering for time-series microarray with production outputs
ISSN: 1432-7643, 1433-7479Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2016Veröffentlicht in Soft computing (Berlin, Germany) (01.11.2016)“… The objective of this study is to obtain knowledge about the most important genes and clusters related to production outputs of real-world time-series microarray data in the industrial microbiology area …”
Volltext
Journal Article -
19
Clustering gene expression time series data using an infinite Gaussian process mixture model
ISSN: 1553-7358, 1553-734X, 1553-7358Veröffentlicht: United States Public Library of Science 01.01.2018Veröffentlicht in PLoS computational biology (01.01.2018)“… To further test our method, we apply DPGP to published microarray data from a microbial model organism exposed to stress and to novel RNA-seq data from a human cell line exposed to the glucocorticoid dexamethasone …”
Volltext
Journal Article -
20
Clustering of unevenly sampled gene expression time-series data
ISSN: 0165-0114, 1872-6801Veröffentlicht: Elsevier B.V 16.05.2005Veröffentlicht in Fuzzy sets and systems (16.05.2005)“… s. The temporal order of the data and the varying length of sampling intervals are important and should be considered in clustering time-series …”
Volltext
Journal Article

