Výsledky vyhledávání - Theory of computation → Parallel algorithms
-
1
MoMaS: Mold Manifold Simulation for real‐time procedural texturing
ISSN: 0167-7055, 1467-8659Vydáno: Oxford Blackwell Publishing Ltd 01.10.2022Vydáno v Computer graphics forum (01.10.2022)“…The slime mold algorithm has recently been under the spotlight thanks to its compelling properties studied across many disciplines like biology, computation theory, and artificial intelligence…”
Získat plný text
Journal Article -
2
InnerSP: A Memory Efficient Sparse Matrix Multiplication Accelerator with Locality-Aware Inner Product Processing
Vydáno: IEEE 01.09.2021Vydáno v 2021 30th International Conference on Parallel Architectures and Compilation Techniques (PACT) (01.09.2021)“… Such an unpredictable increase in memory requirement during computation can limit the applicability of accelerators…”
Získat plný text
Konferenční příspěvek -
3
pSyncPIM: Partially Synchronous Execution of Sparse Matrix Operations for All-Bank PIM Architectures
Vydáno: IEEE 29.06.2024Vydáno v 2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA) (29.06.2024)“… Sparse matrix processing is another critical computation that can significantly benefit from the PIM architecture, but the current all-bank PIM control cannot support diverging executions due to the random sparsity…”
Získat plný text
Konferenční příspěvek -
4
Skywalker: Efficient Alias-Method-Based Graph Sampling and Random Walk on GPUs
Vydáno: IEEE 01.09.2021Vydáno v 2021 30th International Conference on Parallel Architectures and Compilation Techniques (PACT) (01.09.2021)“…Graph sampling and random walk operations, capturing the structural properties of graphs, are playing an important role today as we cannot directly adopt computing-intensive algorithms on large-scale graphs…”
Získat plný text
Konferenční příspěvek -
5
Seer: Predictive Runtime Kernel Selection for Irregular Problems
ISSN: 2643-2838Vydáno: IEEE 02.03.2024Vydáno v Proceedings / International Symposium on Code Generation and Optimization (02.03.2024)“…Modern GPUs are designed for regular problems and suffer from load imbalance when processing irregular data. Prior to our work, a domain expert selects the…”
Získat plný text
Konferenční příspěvek -
6
Max-PIM: Fast and Efficient Max/Min Searching in DRAM
Vydáno: IEEE 05.12.2021Vydáno v 2021 58th ACM/IEEE Design Automation Conference (DAC) (05.12.2021)“… In this work, for the first time, we propose a novel 'Min/Max-in-memory' algorithm based on iterative XNOR bit-wise comparison, which supports parallel inmemory searching for minimum and maximum…”
Získat plný text
Konferenční příspěvek -
7
BlasPart: A Deterministic Parallel Partitioner for Balanced Large-Scale Hypergraph Partitioning
Vydáno: IEEE 22.06.2025Vydáno v 2025 62nd ACM/IEEE Design Automation Conference (DAC) (22.06.2025)“… In this paper, we propose BlasPart, a deterministic parallel algorithm for balanced large-scale hypergraph partitioning…”
Získat plný text
Konferenční příspěvek -
8
Scope States (Artifact)
ISSN: 2509-8195Vydáno: Schloss Dagstuhl – Leibniz-Zentrum für Informatik 06.07.2021“…Compilers that can type check compilation units in parallel can make more efficient use of multi-core architectures, which are nowadays widespread…”
Získat plný text
Soubor dat -
9
ParGNN: A Scalable Graph Neural Network Training Framework on multi-GPUs
Vydáno: IEEE 22.06.2025Vydáno v 2025 62nd ACM/IEEE Design Automation Conference (DAC) (22.06.2025)“… over-partition to alleviate load imbalance. Based on the over-partition results, we present a subgraph pipeline algorithm to overlap communication and computation while maintaining the accuracy of GNN training…”
Získat plný text
Konferenční příspěvek -
10
Parallelizing Maximal Clique Enumeration on GPUs
Vydáno: IEEE 21.10.2023Vydáno v 2023 32nd International Conference on Parallel Architectures and Compilation Techniques (PACT) (21.10.2023)“…We present a GPU solution for exact maximal clique enumeration (MCE) that performs a search tree traversal following the Bron-Kerbosch algorithm…”
Získat plný text
Konferenční příspěvek -
11
HybriMoE: Hybrid CPU-GPU Scheduling and Cache Management for Efficient MoE Inference
Vydáno: IEEE 22.06.2025Vydáno v 2025 62nd ACM/IEEE Design Automation Conference (DAC) (22.06.2025)“…The Mixture of Experts (MoE) architecture has demonstrated significant advantages as it enables to increase the model capacity without a proportional increase in computation…”
Získat plný text
Konferenční příspěvek -
12
Gluon-Async: A Bulk-Asynchronous System for Distributed and Heterogeneous Graph Analytics
ISSN: 2641-7936Vydáno: IEEE 01.09.2019Vydáno v Proceedings / International Conference on Parallel Architectures and Compilation Techniques (01.09.2019)“…Distributed graph analytics systems for CPUs, like D-Galois and Gemini, and for GPUs, like D-IrGL and Lux, use a bulk-synchronous parallel (BSP…”
Získat plný text
Konferenční příspěvek -
13
DS-GL: Advancing Graph Learning via Harnessing Nature's Power within Scalable Dynamical Systems
Vydáno: IEEE 29.06.2024Vydáno v 2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA) (29.06.2024)“… problems and have been adopted for traditional graph computation, such as max-cut. However, when performing complex Graph Learning (GL…”
Získat plný text
Konferenční příspěvek -
14
NDFT: Accelerating Density Functional Theory Calculations via Hardware/Software Co-Design on Near-Data Computing System
Vydáno: IEEE 22.06.2025Vydáno v 2025 62nd ACM/IEEE Design Automation Conference (DAC) (22.06.2025)“…Linear-response time-dependent Density Functional Theory (LR-TDDFT) is a widely used method for accurately predicting the excited-state properties of physical systems…”
Získat plný text
Konferenční příspěvek -
15
MAD-Max Beyond Single-Node: Enabling Large Machine Learning Model Acceleration on Distributed Systems
Vydáno: IEEE 29.06.2024Vydáno v 2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA) (29.06.2024)“…% of all GPU hours are spent on communication with no overlapping computation. To minimize this outstanding communication latency and other inherent at-scale inefficiencies, we introduce an agile performance modeling framework, MAD-Max…”
Získat plný text
Konferenční příspěvek -
16
Asynchronous Distributed-Memory Parallel Algorithms for Influence Maximization
Vydáno: IEEE 17.11.2024Vydáno v SC24: International Conference for High Performance Computing, Networking, Storage and Analysis (17.11.2024)“… We propose distributed-memory parallel algorithms for the two main kernels of a state-of-the-art implementation of one IM algorithm, influence maximization via martingales (IMM…”
Získat plný text
Konferenční příspěvek -
17
SFLU: Synchronization-Free Sparse LU Factorization for Fast Circuit Simulation on GPUs
Vydáno: IEEE 05.12.2021Vydáno v 2021 58th ACM/IEEE Design Automation Conference (DAC) (05.12.2021)“… GPUs.We in this paper propose a synchronization-free sparse LU factorization algorithm called SFLU…”
Získat plný text
Konferenční příspěvek -
18
DenSparSA: A Balanced Systolic Array Approach for Dense and Sparse Matrix Multiplication
Vydáno: IEEE 22.06.2025Vydáno v 2025 62nd ACM/IEEE Design Automation Conference (DAC) (22.06.2025)“… requirements.In this paper, we introduce DenSparSA, a balanced systolic array centralized architecture that can execute sparse matrix computations with minimal overhead to original dense matrix computations…”
Získat plný text
Konferenční příspěvek -
19
Leveraging Difference Recurrence Relations for High-Performance GPU Genome Alignment
Vydáno: ACM 13.10.2024Vydáno v 2024 33rd International Conference on Parallel Architectures and Compilation Techniques (PACT) (13.10.2024)“… while decreasing the associated cost, emphasizing the need for fast and accurate software to perform sequence analysis, given the quadratic complexity of exact pairwise algorithms…”
Získat plný text
Konferenční příspěvek -
20
StocHD: Stochastic Hyperdimensional System for Efficient and Robust Learning from Raw Data
Vydáno: IEEE 05.12.2021Vydáno v 2021 58th ACM/IEEE Design Automation Conference (DAC) (05.12.2021)“…Hyperdimensional Computing (HDC) is a neurally-inspired computation model working based on the observation that the human brain operates on high-dimensional representations of data, called hypervector…”
Získat plný text
Konferenční příspěvek