Výsledky vyhľadávania - Theory of computation → Distributed algorithms

Upresniť hľadanie
  1. 1

    On implementing SWMR registers from SWSR registers in systems with Byzantine failures Autor Hu, Xing, Toueg, Sam

    ISSN: 0178-2770, 1432-0452
    Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2024
    Vydané v Distributed computing (01.06.2024)
    “…The implementation of registers from (potentially) weaker registers is a classical problem in the theory of distributed computing. Since Lamport’s pioneering work…”
    Získať plný text
    Journal Article
  2. 2

    IFHE: Intermediate-Feature Heterogeneity Enhancement for Image Synthesis in Data-Free Knowledge Distillation Autor Chen, Yi, Liu, Ning, Ren, Ao, Yang, Tao, Liu, Duo

    Vydavateľské údaje: IEEE 09.07.2023
    “…Data-free knowledge distillation (DFKD) explores training a compact student network only by a pre-trained teacher without real data. Prevailing DFKD methods…”
    Získať plný text
    Konferenčný príspevok..
  3. 3

    AdaGL: Adaptive Learning for Agile Distributed Training of Gigantic GNNs Autor Zhang, Ruisi, Javaheripi, Mojan, Ghodsi, Zahra, Bleiweiss, Amit, Koushanfar, Farinaz

    Vydavateľské údaje: IEEE 09.07.2023
    “…Distributed GNN training on contemporary massive and densely connected graphs requires information aggregation from all neighboring nodes, which leads to an explosion of inter-server communications…”
    Získať plný text
    Konferenčný príspevok..
  4. 4

    Network-Offloaded Bandwidth-Optimal Broadcast and Allgather for Distributed AI Autor Khalilov, Mikhail, Girolamo, Salvatore Di, Chrapek, Marcin, Nudelman, Rami, Bloch, Gil, Hoefler, Torsten

    Vydavateľské údaje: IEEE 17.11.2024
    “…In the Fully Sharded Data Parallel (FSDP) training pipeline, collective operations can be interleaved to maximize the communication/computation overlap…”
    Získať plný text
    Konferenčný príspevok..
  5. 5

    Asynchronous Distributed-Memory Parallel Algorithms for Influence Maximization Autor Singhal, Shubhendra Pal, Hati, Souvadra, Young, Jeffrey, Sarkar, Vivek, Hayashi, Akihiro, Vuduc, Richard

    Vydavateľské údaje: IEEE 17.11.2024
    “… We propose distributed-memory parallel algorithms for the two main kernels of a state-of-the-art implementation of one IM algorithm, influence maximization via martingales (IMM…”
    Získať plný text
    Konferenčný príspevok..
  6. 6

    Submodularity of Distributed Join Computation Autor Li, Rundong, Riedewald, Mirek, Deng, Xinyan

    ISSN: 0730-8078
    Vydavateľské údaje: United States 01.06.2018
    “…We study distributed equi-join computation in the presence of join-attribute skew, which causes load imbalance…”
    Zistit podrobnosti o prístupe
    Journal Article
  7. 7

    NEO-DNND: Communication-Optimized Distributed Nearest Neighbor Graph Construction Autor Iwabuchi, Keita, Steil, Trevor, Priest, Benjamin W., Pearce, Roger, Sanders, Geoffrey

    Vydavateľské údaje: IEEE 17.11.2024
    “…Graph-based approximate nearest neighbor algorithms have shown high neighbor structure representation quality…”
    Získať plný text
    Konferenčný príspevok..
  8. 8

    DS-GL: Advancing Graph Learning via Harnessing Nature's Power within Scalable Dynamical Systems Autor Song, Ruibing, Wu, Chunshu, Liu, Chuan, Li, Ang, Huang, Michael, Geng, Tony Tong

    Vydavateľské údaje: IEEE 29.06.2024
    “… problems and have been adopted for traditional graph computation, such as max-cut. However, when performing complex Graph Learning (GL…”
    Získať plný text
    Konferenčný príspevok..
  9. 9

    MDLoader: A Hybrid Model-Driven Data Loader for Distributed Graph Neural Network Training Autor Bae, Jonghyun, Choi, Jong Youl, Pasini, Massimiliano Lupo, Mehta, Kshitij, Zhang, Pei, Ibrahim, Khaled Z.

    Vydavateľské údaje: IEEE 17.11.2024
    “…Scalable data management is essential for processing large scientific dataset on HPC platforms for distributed deep learning…”
    Získať plný text
    Konferenčný príspevok..
  10. 10

    Gluon-Async: A Bulk-Asynchronous System for Distributed and Heterogeneous Graph Analytics Autor Dathathri, Roshan, Gill, Gurbinder, Hoang, Loc, Jatala, Vishwesh, Pingali, Keshav, Nandivada, V. Krishna, Dang, Hoang-Vu, Snir, Marc

    ISSN: 2641-7936
    Vydavateľské údaje: IEEE 01.09.2019
    “…Distributed graph analytics systems for CPUs, like D-Galois and Gemini, and for GPUs, like D-IrGL and Lux, use a bulk-synchronous parallel (BSP…”
    Získať plný text
    Konferenčný príspevok..
  11. 11

    Enumeration of Billions of Maximal Bicliques in Bipartite Graphs without Using GPUs Autor Pan, Zhe, He, Shuibing, Li, Xu, Zhang, Xuechen, Yin, Yanlong, Wang, Rui, Shou, Lidan, Song, Mingli, Sun, Xian-He, Chen, Gang

    Vydavateľské údaje: IEEE 17.11.2024
    “… To overcome this limitation, we propose an AdaMBE algorithm. First, we redesign its core operations using local neighborhood information derived from computational subgraphs to minimize redundant memory accesses…”
    Získať plný text
    Konferenčný príspevok..
  12. 12

    BLOwing Trees to the Ground: Layout Optimization of Decision Trees on Racetrack Memory Autor Hakert, Christian, Khan, Asif Ali, Chen, Kuan-Hsun, Hameed, Fazal, Castrillon, Jeronimo, Chen, Jian-Jia

    Vydavateľské údaje: IEEE 05.12.2021
    “…Modern distributed low power systems tend to integrate machine learning algorithms, which are directly executed on the distributed devices (on the edge…”
    Získať plný text
    Konferenčný príspevok..
  13. 13

    Accelerating Distributed DLRM Training with Optimized TT Decomposition and Micro-Batching Autor Wang, Weihu, Xia, Yaqi, Yang, Donglin, Zhou, Xiaobo, Cheng, Dazhao

    Vydavateľské údaje: IEEE 17.11.2024
    “…Deep Learning Recommendation Models (DLRMs) are pivotal in various sectors, yet they are hindered by the high memory demands of embedding tables and the significant communication overhead in distributed training environments…”
    Získať plný text
    Konferenčný príspevok..
  14. 14

    PacTrain: Pruning and Adaptive Sparse Gradient Compression for Efficient Collective Communication in Distributed Deep Learning Autor Wang, Yisu, Wu, Ruilong, Li, Xinjiao, Kutscher, Dirk

    Vydavateľské údaje: IEEE 22.06.2025
    “… As DNNs and datasets grow, distributed training becomes extremely time-consuming and demands larger clusters…”
    Získať plný text
    Konferenčný príspevok..
  15. 15

    Efficient Algorithm for the Computation of the Solution to a Sparse Matrix Equation in Distributed Control Theory Autor Pedroso, Leonardo, Batista, Pedro

    ISSN: 2227-7390, 2227-7390
    Vydavateľské údaje: Basel MDPI AG 01.07.2021
    Vydané v Mathematics (Basel) (01.07.2021)
    “…In this short communication, an algorithm for efficiently solving a sparse matrix equation, which arises frequently in the field of distributed control and estimation theory, is proposed…”
    Získať plný text
    Journal Article
  16. 16

    A Scalable Algorithm for Active Learning Autor Chen, Youguang, Wen, Zheyu, Biros, George

    Vydavateľské údaje: IEEE 17.11.2024
    “…FIRAL is a recently proposed deterministic active learning algorithm for multiclass classification using logistic regression…”
    Získať plný text
    Konferenčný príspevok..
  17. 17

    Reshaping High Energy Physics Applications for Near-Interactive Execution Using TaskVine Autor Sly-Delgado, Barry, Tovar, Ben, Zhou, Jin, Thain, Douglas

    Vydavateľské údaje: IEEE 17.11.2024
    “…High energy physics experiments produce petabytes of data annually that must be reduced to gain insight into the laws of nature. Early-stage reduction executes…”
    Získať plný text
    Konferenčný príspevok..
  18. 18

    Enforcing Crash Consistency of Evolving Network Analytics in Non-Volatile Main Memory Systems Autor Lim, Soklong, Lu, Zaixin, Ren, Bin, Zhang, Xuechen

    ISSN: 2641-7936
    Vydavateľské údaje: IEEE 01.09.2019
    “…Evolving graph processing has enabled the modeling of many complex network systems, e.g., online social networks and gene networks. Existing in-memory graph…”
    Získať plný text
    Konferenčný príspevok..
  19. 19

    Optimizing Distributed ML Communication with Fused Computation-Collective Operations Autor Punniyamurthy, Kishore, Hamidouche, Khaled, Beckmann, Bradford M.

    Vydavateľské údaje: IEEE 17.11.2024
    “…Machine learning models are distributed across multiple nodes using numerous parallelism strategies…”
    Získať plný text
    Konferenčný príspevok..
  20. 20

    TorchGT: A Holistic System for Large-Scale Graph Transformer Training Autor Zhang, Meng, Sun, Jie, Hu, Qinghao, Sun, Peng, Wang, Zeke, Wen, Yonggang, Zhang, Tianwei

    Vydavateľské údaje: IEEE 17.11.2024
    “… TORCHGT optimizes training at three different levels. At algorithm level, by harnessing the graph sparsity, TORCHGT introduces a Dual-interleaved Attention which is computation-efficient and accuracy-maintained…”
    Získať plný text
    Konferenčný príspevok..