Suchergebnisse - Temporal Graph Convolutional Autoencoder

Andere Suchmöglichkeiten:

  1. 1

    Human-related anomalous event detection via spatial-temporal graph convolutional autoencoder with embedded long short-term memory network von Li, Nanjun, Chang, Faliang, Liu, Chunsheng

    ISSN: 0925-2312, 1872-8286
    Veröffentlicht: Elsevier B.V 14.06.2022
    Veröffentlicht in Neurocomputing (Amsterdam) (14.06.2022)
    “… Our network is established on a Spatial-temporal Graph Convolutional …”
    Volltext
    Journal Article
  2. 2

    Spatio-temporal graph convolutional autoencoder for transonic wing pressure distribution forecasting von Immordino, Gabriele, Vaiuso, Andrea, Da Ronch, Andrea, Righi, Marcello

    ISSN: 1270-9638
    Veröffentlicht: Elsevier Masson SAS 01.10.2025
    Veröffentlicht in Aerospace science and technology (01.10.2025)
    “… This study presents a framework for predicting unsteady transonic wing pressure distributions due to pitch and plunge movement, integrating an autoencoder architecture with graph convolutional …”
    Volltext
    Journal Article
  3. 3

    Graph autoencoder with mirror temporal convolutional networks for traffic anomaly detection von Ren, Zhiyu, Li, Xiaojie, Peng, Jing, Chen, Ken, Tan, Qushan, Wu, Xi, Shi, Canghong

    ISSN: 2045-2322, 2045-2322
    Veröffentlicht: London Nature Publishing Group UK 13.01.2024
    Veröffentlicht in Scientific reports (13.01.2024)
    “… In this paper, we propose a mirror temporal graph autoencoder (MTGAE) framework to explore anomalies and capture unseen nodes and the spatiotemporal correlation between nodes in the traffic network …”
    Volltext
    Journal Article
  4. 4

    Convolutional Graph Autoencoder: A Generative Deep Neural Network for Probabilistic Spatio-Temporal Solar Irradiance Forecasting von Khodayar, Mahdi, Mohammadi, Saeed, Khodayar, Mohammad E., Wang, Jianhui, Liu, Guangyi

    ISSN: 1949-3029, 1949-3037
    Veröffentlicht: Piscataway IEEE 01.04.2020
    Veröffentlicht in IEEE transactions on sustainable energy (01.04.2020)
    “… This probabilistic data generation model, i.e., convolutional graph autoencoder (CGAE), is devised based on the localized first-order approximation …”
    Volltext
    Journal Article
  5. 5

    Temporal Graph Convolutional Autoencoder based Fault Detection for Renewable Energy Applications von Arifeen, Murshedul, Petrovski, Andrei

    ISSN: 2769-3899
    Veröffentlicht: IEEE 12.05.2024
    “… To address this issue, we propose an autoencoder model that uses a temporal graph convolutional layer to detect faults in the energy generation process …”
    Volltext
    Tagungsbericht
  6. 6

    A Comprehensive Survey on Graph Neural Networks von Wu, Zonghan, Pan, Shirui, Chen, Fengwen, Long, Guodong, Zhang, Chengqi, Yu, Philip S.

    ISSN: 2162-237X, 2162-2388, 2162-2388
    Veröffentlicht: United States IEEE 01.01.2021
    “… -Euclidean domains and are represented as graphs with complex relationships and interdependency between objects …”
    Volltext
    Journal Article
  7. 7

    A Novel Unsupervised Structural Damage Detection Method Based on TCN-GAT Autoencoder von Ni, Yanchun, Jin, Qiyuan, Hu, Rui

    ISSN: 1424-8220, 1424-8220
    Veröffentlicht: Switzerland MDPI AG 03.11.2025
    Veröffentlicht in Sensors (Basel, Switzerland) (03.11.2025)
    “… This paper proposes an autoencoder model integrating Temporal Convolutional Networks (TCN) and Graph Attention Networks (GAT …”
    Volltext
    Journal Article
  8. 8

    Graph-Variational Convolutional Autoencoder-Based Fault Detection and Diagnosis for Photovoltaic Arrays von Arifeen, Murshedul, Petrovski, Andrei, Hasan, Md Junayed, Noman, Khandaker, Navid, Wasib Ul, Haruna, Auwal

    ISSN: 2075-1702, 2075-1702
    Veröffentlicht: Basel MDPI AG 01.12.2024
    Veröffentlicht in Machines (Basel) (01.12.2024)
    “… This paper introduces a deep learning model that combines a graph convolutional network with a variational autoencoder to diagnose faults in solar arrays …”
    Volltext
    Journal Article
  9. 9

    DeGTeC: A deep graph-temporal clustering framework for data-parallel job characterization in data centers von Liang, Yi, Chen, Kaizhong, Yi, Lan, Su, Xing, Jin, Xiaoming

    ISSN: 0167-739X, 1872-7115
    Veröffentlicht: Elsevier B.V 01.04.2023
    Veröffentlicht in Future generation computer systems (01.04.2023)
    “… The DeGTeC framework is constructed mainly based on two autoencoders, i.e., TaskAE and JobAE. TaskAE and JobAE contain spectral graph convolutional network …”
    Volltext
    Journal Article
  10. 10

    Anomaly Detection Based on Graph Convolutional Network–Variational Autoencoder Model Using Time-Series Vibration and Current Data von Choi, Seung-Hwan, An, Dawn, Lee, Inho, Lee, Suwoong

    ISSN: 2227-7390, 2227-7390
    Veröffentlicht: Basel MDPI AG 01.12.2024
    Veröffentlicht in Mathematics (Basel) (01.12.2024)
    “… This paper proposes a deep learning-based anomaly detection method using time-series vibration and current data, which were obtained from endurance tests on …”
    Volltext
    Journal Article
  11. 11

    Topology and FDIA identification in distribution system state estimation using a data-driven approach von Raghuvamsi, Y., Batchu, Sreenadh, Teeparthi, Kiran

    ISSN: 0263-2241
    Veröffentlicht: Elsevier Ltd 01.09.2025
    “… To address these issues, a novel denoising autoencoder (DAE) is developed with the use of graph-based temporal convolutional layers in the encoder and decoder stages …”
    Volltext
    Journal Article
  12. 12

    Robust Graph Autoencoder-Based Detection of False Data Injection Attacks Against Data Poisoning in Smart Grids von Takiddin, Abdulrahman, Ismail, Muhammad, Atat, Rachad, Davis, Katherine R., Serpedin, Erchin

    ISSN: 2691-4581, 2691-4581
    Veröffentlicht: IEEE 01.03.2024
    Veröffentlicht in IEEE transactions on artificial intelligence (01.03.2024)
    “… Machine learning-based detection of false data injection attacks (FDIAs) in smart grids relies on labeled measurement data for training and testing. The …”
    Volltext
    Journal Article
  13. 13

    Uncertainty-aware probabilistic travel demand prediction for mobility-on-demand services von Peng, Tao, Gao, Jie, Cats, Oded

    ISSN: 0968-090X
    Veröffentlicht: Elsevier Ltd 01.12.2025
    “… •Spatial-temporal deep learning framework for probabilistic MoD demand prediction …”
    Volltext
    Journal Article
  14. 14

    Matrix Completion with Variational Graph Autoencoders: Application in Hyperlocal Air Quality Inference von Do, Tien Huu, Minh Nguyen, Duc, Tsiligianni, Evaggelia, Aguirre, Angel Lopez, Panzica La Manna, Valerio, Pasveer, Frank, Philips, Wilfried, Deligiannis, Nikos

    ISSN: 2379-190X
    Veröffentlicht: IEEE 01.05.2019
    “… We formulate air quality inference in this setting as a graph-based matrix completion problem and propose a novel variational model based on graph convolutional autoencoders …”
    Volltext
    Tagungsbericht
  15. 15

    An Integrated Distributed Fault Diagnosis Framework for Large-Scale Industrial Processes Based on Spatio-Temporal Causal Analysis von Hua, Dongjie, Dong, Jie, Peng, Kaixiang, Simani, Silvio

    ISSN: 1551-3203, 1941-0050
    Veröffentlicht: Piscataway IEEE 01.08.2025
    Veröffentlicht in IEEE transactions on industrial informatics (01.08.2025)
    “… Second, an embedded time convolutional network-based autoencoder is designed to extract spatio-temporal features simultaneously …”
    Volltext
    Journal Article
  16. 16

    Graph neural networks: Historical backgrounds, present revolutions, and conventionalization for the future von Maghdid, Sozan S., Rashid, Tarik A., Askar, Shavan K.

    ISSN: 2364-415X, 2364-4168
    Veröffentlicht: Cham Springer International Publishing 01.11.2025
    Veröffentlicht in International journal of data science and analytics (01.11.2025)
    “… –temporal graph neural networks (STGNNs), recurrent-based GNNs (RecGNNs), and graph autoencoders (GAEs …”
    Volltext
    Journal Article
  17. 17

    Recurrent graph convolutional multi-mesh autoencoder for unsteady transonic aerodynamics von Massegur, David, Da Ronch, Andrea

    ISSN: 0889-9746
    Veröffentlicht: Elsevier Ltd 01.12.2024
    Veröffentlicht in Journal of fluids and structures (01.12.2024)
    “… This work presents a geometric-deep-learning multi-mesh autoencoder framework to predict the spatial and temporal evolution of aerodynamic loads for a finite-span wing undergoing different types of motion …”
    Volltext
    Journal Article
  18. 18

    Multi-Task Spatial-Temporal Graph Auto-Encoder for Hand Motion Denoising von Zhou, Kanglei, Shum, Hubert P. H., Li, Frederick W. B., Liang, Xiaohui

    ISSN: 1077-2626, 1941-0506, 1941-0506
    Veröffentlicht: United States IEEE 01.10.2024
    “… Our solution is the Multi-task Spatial-Temporal Graph Auto-Encoder (Multi-STGAE), a model that accurately denoises and predicts hand motion by exploiting the inter-dependency of both tasks …”
    Volltext
    Journal Article
  19. 19

    A Spatio‐Temporal Enhanced Graph‐Transformer AutoEncoder embedded pose for anomaly detection von Zhu, Honglei, Wei, Pengjuan, Xu, Zhigang

    ISSN: 1751-9632, 1751-9640
    Veröffentlicht: Stevenage John Wiley & Sons, Inc 01.04.2024
    Veröffentlicht in IET computer vision (01.04.2024)
    “… ‐based video anomaly detection in recent years. The spatio‐temporal graph convolutional network has been proven to be effective in modelling the spatio …”
    Volltext
    Journal Article
  20. 20

    A graph-based semi-supervised approach to classification learning in digital geographies von Liu, Pengyuan, De Sabbata, Stefano

    ISSN: 0198-9715, 1873-7587
    Veröffentlicht: Oxford Elsevier Ltd 01.03.2021
    Veröffentlicht in Computers, environment and urban systems (01.03.2021)
    “… As the distinction between online and physical spaces rapidly degrades, social media have now become an integral component of how many people's everyday …”
    Volltext
    Journal Article