Search Results - Symbolic–numeric sparse interpolation

  • Showing 1 - 6 results of 6
Refine Results
  1. 1

    Symbolicnumeric sparse interpolation of multivariate polynomials by Giesbrecht, Mark, Labahn, George, Lee, Wen-shin

    ISSN: 0747-7171, 1095-855X
    Published: Elsevier Ltd 01.08.2009
    Published in Journal of symbolic computation (01.08.2009)
    “…We consider the problem of sparse interpolation of an approximate multivariate black-box polynomial in floating point arithmetic…”
    Get full text
    Journal Article
  2. 2

    A new algorithm for sparse interpolation of multivariate polynomials by Cuyt, Annie, Lee, Wen-shin

    ISSN: 0304-3975, 1879-2294
    Published: Elsevier B.V 17.12.2008
    Published in Theoretical computer science (17.12.2008)
    “…To reconstruct a black box multivariate sparse polynomial from its floating point evaluations, the existing algorithms need to know upper bounds for both the number of terms in the polynomial…”
    Get full text
    Journal Article
  3. 3

    Error Correction for Symbolic and Hybrid Symbolic-Numeric Sparse Interpolation Algorithms by Comer, Matthew T

    ISBN: 1303546876, 9781303546877
    Published: ProQuest Dissertations & Theses 01.01.2013
    “…We introduce error correction to two problems of sparse polynomial interpolation…”
    Get full text
    Dissertation
  4. 4

    What is Hybrid Symbolic-Numeric Computation? by Kaltofen, E.

    ISBN: 1467302074, 9781467302074
    Published: IEEE 01.09.2011
    “…Hybrid symbolic-numeric computation constitutes the Fifth of my "Seven Dwarfs" of Symbolic Computation [1…”
    Get full text
    Conference Proceeding
  5. 5
  6. 6

    Tropical algebraic geometry in Maple: A preprocessing algorithm for finding common factors for multivariate polynomials with approximate coefficients by Adrovic, Danko, Verschelde, Jan

    ISSN: 0747-7171, 1095-855X
    Published: Elsevier Ltd 01.07.2011
    Published in Journal of symbolic computation (01.07.2011)
    “…Finding a common factor of two multivariate polynomials with approximate coefficients is a problem in symbolicnumeric computing…”
    Get full text
    Journal Article