Suchergebnisse - Stacked denoising autoencoder

  1. 1

    Automated feature learning for nonlinear process monitoring – An approach using stacked denoising autoencoder and k-nearest neighbor rule von Zhang, Zehan, Jiang, Teng, Li, Shuanghong, Yang, Yupu

    ISSN: 0959-1524, 1873-2771
    Veröffentlicht: Elsevier Ltd 01.04.2018
    Veröffentlicht in Journal of process control (01.04.2018)
    “… •Automated feature learning based on stacked denoising autoencoder (SDAE) and k-nearest neighbor rule (kNN …”
    Volltext
    Journal Article
  2. 2

    Roller bearing fault diagnosis using stacked denoising autoencoder in deep learning and Gath–Geva clustering algorithm without principal component analysis and data label von Xu, Fan, Tse, Wai tai Peter, Tse, Yiu Lun

    ISSN: 1568-4946, 1872-9681
    Veröffentlicht: Elsevier B.V 01.12.2018
    Veröffentlicht in Applied soft computing (01.12.2018)
    “… Most deep learning models such as stacked autoencoder (SAE) and stacked denoising autoencoder (SDAE …”
    Volltext
    Journal Article
  3. 3

    Stacked denoising autoencoder based fault location in voltage source converters‐high voltage direct current von Luo, Guomin, Cheng, Mengxiao, Hei, Jiaxin, Wang, Xiaojun, Huang, Weibo, He, Jinghan

    ISSN: 1751-8687, 1751-8695
    Veröffentlicht: Wiley 01.05.2021
    Veröffentlicht in IET generation, transmission & distribution (01.05.2021)
    “… A stacked denoising autoencoder based fault location method for high voltage direct current transmission systems is proposed …”
    Volltext
    Journal Article
  4. 4

    Knock-Knock: Acoustic object recognition by using stacked denoising autoencoders von Luo, Shan, Zhu, Leqi, Althoefer, Kaspar, Liu, Hongbin

    ISSN: 0925-2312, 1872-8286
    Veröffentlicht: Elsevier B.V 06.12.2017
    Veröffentlicht in Neurocomputing (Amsterdam) (06.12.2017)
    “… In this paper, stacked denoising autoencoders are applied to train a deep learning model. Knocking each object in our test set 120 times with a marker pen to obtain …”
    Volltext
    Journal Article
  5. 5

    Deep learning for electrolysis process anode effect prediction based on long short-term memory network and stacked denoising autoencoder von Yin, Gang, Li, Yi-Hui, Yan, Fei-Ya, Quan, Peng-Cheng, Wang, Min, Cao, Wen-Qi, Xu, Heng-Quan, Lu, Jian, He, Wen

    ISSN: 1001-0521, 1867-7185
    Veröffentlicht: Beijing Nonferrous Metals Society of China 01.12.2024
    Veröffentlicht in Rare metals (01.12.2024)
    “… A stacked denoising autoencoder is utilized to denoise and extract features from a large number of long-period parameter data …”
    Volltext
    Journal Article
  6. 6

    Stacked denoising autoencoder‐based feature learning for out‐of‐control source recognition in multivariate manufacturing process von Yu, Jianbo, Zheng, Xiaoyun, Wang, Shijin

    ISSN: 0748-8017, 1099-1638
    Veröffentlicht: Bognor Regis Wiley Subscription Services, Inc 01.02.2019
    Veröffentlicht in Quality and reliability engineering international (01.02.2019)
    “… This paper presents an effective and reliable deep learning method known as stacked denoising autoencoder (SDAE …”
    Volltext
    Journal Article
  7. 7

    Deep feature fusion‐based stacked denoising autoencoder for tag recommendation systems von Fei, Zhengshun, Wang, Jinglong, Liu, Kangling, Attahi, Eric, Huang, Bingqiang

    ISSN: 2097-3608, 2631-6315
    Veröffentlicht: Oxford John Wiley & Sons, Inc 01.09.2023
    Veröffentlicht in IET cyber-systems and robotics (01.09.2023)
    “… With the rapid development of artificial intelligence technology, commercial robots have gradually entered our daily lives. In order to promote product …”
    Volltext
    Journal Article
  8. 8

    Denoising stacked autoencoders‐based near‐infrared quality monitoring method via robust samples evaluation von Lv, Jiapeng, Chen, Zihao, Luan, Xiaoli, Liu, Fei

    ISSN: 0008-4034, 1939-019X
    Veröffentlicht: Hoboken, USA John Wiley & Sons, Inc 01.05.2023
    Veröffentlicht in Canadian journal of chemical engineering (01.05.2023)
    “… This paper proposes a denoising stacked autoencoders‐based near‐infrared spectroscopy …”
    Volltext
    Journal Article
  9. 9

    Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification von Lu, Chen, Wang, Zhen-Ya, Qin, Wei-Li, Ma, Jian

    ISSN: 0165-1684, 1872-7557
    Veröffentlicht: Elsevier B.V 01.01.2017
    Veröffentlicht in Signal processing (01.01.2017)
    “… improvements, and economical efficiency. This paper investigates an effective and reliable deep learning method known as stacked denoising autoencoder (SDA …”
    Volltext
    Journal Article
  10. 10

    Automatic Diagnosis of Microgrid Networks’ Power Device Faults Based on Stacked Denoising Autoencoders and Adaptive Affinity Propagation Clustering von Fan, Bo, Zhang, Xiaodi, Shu, Xin, Xu, Fan

    ISSN: 1076-2787, 1099-0526
    Veröffentlicht: Cairo, Egypt Hindawi Publishing Corporation 26.07.2020
    Veröffentlicht in Complexity (New York, N.Y.) (26.07.2020)
    “… This paper presents a model based on stacked denoising autoencoders (SDAEs) in deep learning and adaptive affinity propagation (adAP …”
    Volltext
    Journal Article
  11. 11

    Denoising stacked autoencoders for transient electromagnetic signal denoising von Lin, Fanqiang, Chen, Kecheng, Wang, Xuben, Cao, Hui, Chen, Danlei, Chen, Fanzeng

    ISSN: 1607-7946, 1023-5809, 1607-7946
    Veröffentlicht: Gottingen Copernicus GmbH 01.03.2019
    Veröffentlicht in Nonlinear processes in geophysics (01.03.2019)
    “… of the characteristics of the SFS to denoise the SFS. We introduce the SFSDSA (secondary field signal denoising stacked autoencoders …”
    Volltext
    Journal Article
  12. 12

    Short-Term Electricity Price Forecasting With Stacked Denoising Autoencoders von Wang, Long, Zhang, Zijun, Chen, Jieqiu

    ISSN: 0885-8950, 1558-0679
    Veröffentlicht: New York IEEE 01.07.2017
    Veröffentlicht in IEEE transactions on power systems (01.07.2017)
    “… A stacked denoising autoencoder (SDA) model, a class of deep neural networks, and its extended version are utilized to forecast the electricity price hourly …”
    Volltext
    Journal Article
  13. 13

    A sparse stacked denoising autoencoder with optimized transfer learning applied to the fault diagnosis of rolling bearings von Sun, Meidi, Wang, Hui, Liu, Ping, Huang, Shoudao, Fan, Peng

    ISSN: 0263-2241, 1873-412X
    Veröffentlicht: London Elsevier Ltd 01.11.2019
    “… •Fault diagnosis by stacked autoencoder requires less professional knowledge.•Domain adaptation by optimized transfer learning reduces the algorithm’s complexity …”
    Volltext
    Journal Article
  14. 14

    Remote Sensing Image Classification Based on Stacked Denoising Autoencoder von Liang, Peng, Shi, Wenzhong, Zhang, Xiaokang

    ISSN: 2072-4292, 2072-4292
    Veröffentlicht: MDPI AG 01.01.2018
    Veröffentlicht in Remote sensing (Basel, Switzerland) (01.01.2018)
    “… is proposed, which is based on Stacked Denoising Autoencoder. First, the deep network model is built through the stacked layers of Denoising Autoencoder …”
    Volltext
    Journal Article
  15. 15

    Probabilistic Stacked Denoising Autoencoder for Power System Transient Stability Prediction With Wind Farms von Su, Tong, Liu, Youbo, Zhao, Junbo, Liu, Junyong

    ISSN: 0885-8950, 1558-0679
    Veröffentlicht: New York IEEE 01.07.2021
    Veröffentlicht in IEEE transactions on power systems (01.07.2021)
    “… To address the uncertainties of renewable energy and loads in transient stability assessment with credible contingencies, this letter proposes a stacked denoising autoencoder (SDAE …”
    Volltext
    Journal Article
  16. 16

    Life prediction of lithium-ion batteries based on stacked denoising autoencoders von Xu, Fan, Yang, Fangfang, Fei, Zicheng, Huang, Zhelin, Tsui, Kwok-Leung

    ISSN: 0951-8320, 1879-0836
    Veröffentlicht: Barking Elsevier Ltd 01.04.2021
    Veröffentlicht in Reliability engineering & system safety (01.04.2021)
    “… In this study, a deep learning-based stacked denoising autoencoder (SDAE) method is proposed to directly predict battery life by extracting various battery features …”
    Volltext
    Journal Article
  17. 17

    Multimode process monitoring based on hierarchical mode identification and stacked denoising autoencoder von Gao, Huihui, Wei, Chen, Huang, Wenjie, Gao, Xuejin

    ISSN: 0009-2509
    Veröffentlicht: Elsevier Ltd 18.05.2022
    Veröffentlicht in Chemical engineering science (18.05.2022)
    “… •A novel hierarchical mode identification strategy is proposed for multimode process.•An improved density peaks clustering algorithm called LDRSDPC is …”
    Volltext
    Journal Article
  18. 18

    Anomaly detection and diagnosis for wind turbines using long short-term memory-based stacked denoising autoencoders and XGBoost von Zhang, Chen, Hu, Di, Yang, Tao

    ISSN: 0951-8320, 1879-0836
    Veröffentlicht: Barking Elsevier Ltd 01.06.2022
    Veröffentlicht in Reliability engineering & system safety (01.06.2022)
    “… An anomaly detection and diagnosis method for wind turbines using long short-term memory-based stacked denoising autoencoders (LSTM-SDAE …”
    Volltext
    Journal Article
  19. 19

    Intelligent fault diagnosis approach with unsupervised feature learning by stacked denoising autoencoder von Xia, Min, Li, Teng, Liu, Lizhi, Xu, Lin, de Silva, Clarence W

    ISSN: 1751-8822, 1751-8830
    Veröffentlicht: The Institution of Engineering and Technology 01.09.2017
    Veröffentlicht in IET science, measurement & technology (01.09.2017)
    “… ) based on stacked denoising autoencoder. Representative features are learned by applying the denoising autoencoder to the unlabelled data in an unsupervised manner …”
    Volltext
    Journal Article
  20. 20

    Intelligent analysis of tool wear state using stacked denoising autoencoder with online sequential-extreme learning machine von Ou, Jiayu, Li, Hongkun, Huang, Gangjin, Yang, Guowei

    ISSN: 0263-2241, 1873-412X
    Veröffentlicht: London Elsevier Ltd 01.01.2021
    “… In this research, a new method named stacked …”
    Volltext
    Journal Article