Výsledky vyhledávání - Spatial-temporal graph conventional network algorithm

  1. 1

    Personal thermal comfort models using digital twins: Preference prediction with BIM-extracted spatialtemporal proximity data from Build2Vec Autor Abdelrahman, Mahmoud M., Chong, Adrian, Miller, Clayton

    ISSN: 0360-1323, 1873-684X
    Vydáno: Oxford Elsevier Ltd 01.01.2022
    Vydáno v Building and environment (01.01.2022)
    “… This research aims to build upon an existing vector-based spatial model, called Build2Vec, for predicting spatialtemporal occupants…”
    Získat plný text
    Journal Article
  2. 2

    A Novel Attention-Based Dynamic Multi-Graph Spatial-Temporal Graph Neural Network Model for Traffic Prediction Autor Diao, Chunyan, Zhang, Dafang, Liang, Wei, Jiang, Man, Li, Kuanching

    ISSN: 2471-285X, 2471-285X
    Vydáno: Piscataway IEEE 01.04.2025
    “… However, the existing spatial-temporal prediction algorithms are based on graph convolution to capture global or heterogeneous relationships, and simpler graph convolution models cannot accurately…”
    Získat plný text
    Journal Article
  3. 3

    ST-ReGE: A Novel Spatial-Temporal Residual Graph Convolutional Network for CVD Autor Zhang, Huaicheng, Liu, Wenhan, Chang, Sheng, Wang, Hao, He, Jin, Huang, Qijun

    ISSN: 2168-2194, 2168-2208, 2168-2208
    Vydáno: Piscataway IEEE 01.01.2024
    “… However, conventional DL models typically merely focus on temporal features when analyzing Euclidean data…”
    Získat plný text
    Journal Article
  4. 4

    On hourly prediction of PM2.5 using spatialtemporal graph convolutional network Autor Ren, Zhenxing, Ji, Xinxin

    ISSN: 1865-0473, 1865-0481
    Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2025
    Vydáno v Earth science informatics (01.06.2025)
    “… for dangerous air pollutants. Conventional forecasting models are limited due to the extraction of spatial and spatiotemporal features between variables, emphasizing more on the temporal characteristics of the variables…”
    Získat plný text
    Journal Article
  5. 5

    Bidirectional SpatialTemporal Graph Convolutional Model: Traffic Flow Forecasting With Enhanced Extended Capabilities Autor Tan, Xiaogang, Qian, Guoping, Pei, Boyu, Long, Kejun

    ISSN: 0197-6729, 2042-3195
    Vydáno: John Wiley & Sons, Inc 01.01.2025
    Vydáno v Journal of advanced transportation (01.01.2025)
    “…–temporal expanded graph convolutional model (Bi‐STEGCM) to traffic flow forecasting. This addresses the limitations of conventional models, particularly in capturing spatial features and managing missing or anomalous data. The Bi…”
    Získat plný text
    Journal Article
  6. 6

    Building energy consumption prediction for campus accommodation buildings based on spatial temporal graph convolution networks Autor Qiao, Qingyao, Xu, Ziqing, Ren, Congyang, Yunusa-Kaltungo, Akilu, Cheung, Clara

    ISSN: 2212-8271, 2212-8271
    Vydáno: Elsevier B.V 2025
    Vydáno v Procedia CIRP (2025)
    “…The Net Zero Building (NZB) strategy has been regarded as the fundamental pathway to achieve sustainable cities and communities and to amend climate change…”
    Získat plný text
    Journal Article
  7. 7

    Evaluating Method of Lower Limb Coordination Based on Spatial-Temporal Dependency Networks Autor Qin, Xuelin, Sang, Huinan, Wu, Shihua, Chen, Shishu, Chen, Zhiwei, Ren, Yongjun

    ISSN: 1546-2226, 1546-2218, 1546-2226
    Vydáno: Henderson Tech Science Press 2025
    “…, and the requirement for multiple markers. While 3D pose estimation algorithms combined with ordinary cameras offer an alternative, their accuracy often deteriorates under significant body occlusion…”
    Získat plný text
    Journal Article
  8. 8

    Enhancement of traffic forecasting through graph neural network-based information fusion techniques Autor Ahmed, Shams Forruque, Kuldeep, Sweety Angela, Rafa, Sabiha Jannat, Fazal, Javeria, Hoque, Mahfara, Liu, Gang, Gandomi, Amir H.

    ISSN: 1566-2535, 1872-6305
    Vydáno: Elsevier B.V 01.10.2024
    Vydáno v Information fusion (01.10.2024)
    “… To improve forecasting accuracy and capture complex interactions within transportation networks, information fusion approaches are crucial for traffic predictions based on graph neural networks (GNNs…”
    Získat plný text
    Journal Article
  9. 9

    Toward the Age in Forwarding: A Deep Reinforcement Learning Enabled Routing Mechanism for Large-Scale Satellite Networks via Spatial-Temporal Graph Neural Networks Autor Gao, Ronghao, Zhang, Bo, Zhang, Qinyu, Yang, Zhihua

    ISSN: 2998-4157, 2998-4157
    Vydáno: IEEE 15.08.2025
    Vydáno v IEEE Transactions on Networking (15.08.2025)
    “…)-assisted Spatial-Temporal Graph Neural Network (STGNN) is well-designed to extract the topological features both in temporal…”
    Získat plný text
    Journal Article
  10. 10

    HyperLAC: Hypergraph-based Large-scale Alert Classification with spatial-temporal context enhancement Autor Zhang, Shilong, Luo, Zian, Ren, Zehua, Zhu, Yumeng, Zhang, Haichuan, Liu, Yang

    ISSN: 0950-7051
    Vydáno: Elsevier B.V 25.11.2025
    Vydáno v Knowledge-based systems (25.11.2025)
    “…•We introduce AIHC, an efficient hypergraph clustering algorithm for security event extraction…”
    Získat plný text
    Journal Article
  11. 11

    A hybrid GNN–vanilla vision transformer model for IoT-based soil and crop forecasting Autor Mallick, Shrabani, Suhas, S., John, Tegil J., Mallick, Soubhagya Ranjan, Chaudhary, Neha, Tumma, Shyam Sunder, Behera, Aurobinda

    ISSN: 2511-2104, 2511-2112
    Vydáno: Singapore Springer Nature Singapore 01.12.2025
    “…In this work, we propose a Graph Neural Network (GNN) and Vanilla Transformer-based hybrid model for IoT driven soil and crop prediction…”
    Získat plný text
    Journal Article
  12. 12

    When Dynamic Causality Comes to Graph-Temporal Neural Network Autor Wang, Haowei, Pan, Yicheng, Ma, Meng, Wang, Ping

    ISSN: 2161-4407
    Vydáno: IEEE 18.07.2022
    “…Spatial-temporal data forecasting is a core task in many applications, and traffic forecasting is a typical example…”
    Získat plný text
    Konferenční příspěvek
  13. 13

    Transformer based models with hierarchical graph representations for enhanced climate forecasting Autor Ramu, T. Bhargava, Kocherla, Raviteja, Sirisha, G. N. V. G., Chetana, V. Lakshmi, Sagar, P. Vidya, Balamurali, R., Boddu, Nanditha

    ISSN: 2045-2322, 2045-2322
    Vydáno: London Nature Publishing Group UK 02.07.2025
    Vydáno v Scientific reports (02.07.2025)
    “…–2017, consisting of 1,500 daily records). The model integrates three key components: Spatial-Temporal Fusion Module (STFM…”
    Získat plný text
    Journal Article
  14. 14

    CNGAT: A Graph Neural Network Model for Radar Quantitative Precipitation Estimation Autor Peng, Xuan, Li, Qian, Jing, Jinrui

    ISSN: 0196-2892, 1558-0644
    Vydáno: New York IEEE 2022
    “… In this article, we propose a graph neural network (GNN)-based RQPE model named categorical node graph attention network (CNGAT…”
    Získat plný text
    Journal Article
  15. 15

    A Traffic Flow Prediction Model Based on Dynamic Graph Convolution and Adaptive Spatial Feature Extraction Autor Li, Weijun, Yang, Guoliang, Xiong, Zhangyou, Zhu, Xiaojuan, Ma, Xinyu

    ISSN: 2073-8994, 2073-8994
    Vydáno: Basel MDPI AG 01.07.2025
    Vydáno v Symmetry (Basel) (01.07.2025)
    “…–temporal dependencies. Unlike conventional models relying on static graph structures that often break real-world symmetry relationships, our approach introduces two key innovations respecting the dynamic symmetry of traffic networks…”
    Získat plný text
    Journal Article
  16. 16

    Dynamic Hypergraph Neural Networks for Flotation Condition Recognition Based on Group-View Composite Features Autor Wang, Shuai, Wang, Kang, Li, Xiaoli

    ISSN: 0018-9456, 1557-9662
    Vydáno: New York IEEE 2025
    “… To address these challenges, we propose group-view multipath residual neural network (GVResNet)-EvolveHGNN, a novel framework for robust feature extraction and spatial-temporal modeling in flotation video sequences…”
    Získat plný text
    Journal Article
  17. 17

    Topology-Compressed Data Delivery in Large-Scale Heterogeneous Satellite Networks: An Age-Driven Spatial-Temporal Graph Neural Network Approach Autor Gao, Ronghao, Zhang, Bo, Zhang, Qinyu, Yang, Zhihua

    ISSN: 1536-1233, 1558-0660
    Vydáno: IEEE 01.07.2025
    Vydáno v IEEE transactions on mobile computing (01.07.2025)
    “…In Large-Scale Heterogeneous Satellite Networks (LSHSNs) integrating Low Earth Orbit (LEO…”
    Získat plný text
    Magazine Article
  18. 18

    Leveraging deep learning for robust EEG analysis in mental health monitoring Autor Liu, Zixiang, Zhao, Juan

    ISSN: 1662-5196, 1662-5196
    Vydáno: Switzerland Frontiers Research Foundation 03.01.2025
    Vydáno v Frontiers in neuroinformatics (03.01.2025)
    “… of cognitive and emotional conditions. Conventional methods for EEG-based mental health evaluation often depend on manually crafted features or basic machine learning approaches, like support vector classifiers or superficial neural networks…”
    Získat plný text
    Journal Article
  19. 19

    Multi-Branch Multi-Scale Channel Fusion Graph Convolutional Networks With Transfer Cost for Robotic Tactile Recognition Tasks Autor Zhang, Yupo, Li, Xiaoyu, Fang, Senlin, Liu, Yiwen, Wang, Jingnan, Yuan, Bo, Yi, Zhengkun

    ISSN: 1545-5955, 1558-3783
    Vydáno: IEEE 2025
    “…) to extract spatial-temporal features. It is the first LSTM-GCN network with a multi-branch structure that utilizes multi-feature scale and multi-channel fusion…”
    Získat plný text
    Journal Article
  20. 20

    Enhancing power quality through the integration of hybrid renewable energy sources and multi-level inverters with unified power quality conditioner Autor Bharathi, S. Lakshmi Kanthan, Manjula, A., Veeramanikandan, P.

    ISSN: 0948-7921, 1432-0487
    Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2025
    Vydáno v Electrical engineering (01.11.2025)
    “…) and a Spike-Induced Graph Neural Network (SIGNN), referred to as the HOA–SIGNN method. The primary objective is to mitigate the effects of nonlinear, unbalanced, and critical load conditions by optimizing the 2DOF-PIDF…”
    Získat plný text
    Journal Article