Suchergebnisse - Semi-supervised variational autoencoder~
-
1
Fault diagnosis of power equipment based on variational autoencoder and semi‐supervised learning
ISSN: 1532-0626, 1532-0634Veröffentlicht: Hoboken Wiley Subscription Services, Inc 10.09.2024Veröffentlicht in Concurrency and computation (10.09.2024)“… ) method based on variational autoencoder and semi‐supervised learning is proposed in this paper …”
Volltext
Journal Article -
2
Customization of latent space in semi-supervised Variational AutoEncoder
ISSN: 0167-8655Veröffentlicht: 01.01.2024Veröffentlicht in Pattern recognition letters (01.01.2024)Volltext
Journal Article -
3
Exploring semi-supervised variational autoencoders for biomedical relation extraction
ISSN: 1046-2023, 1095-9130, 1095-9130Veröffentlicht: United States Elsevier Inc 15.08.2019Veröffentlicht in Methods (San Diego, Calif.) (15.08.2019)“… •A semi-supervised method is proposed based on variational autoencoders (VAE) for biomedical relation extraction …”
Volltext
Journal Article -
4
Learning from small medical data—robust semi-supervised cancer prognosis classifier with Bayesian variational autoencoder
ISSN: 2635-0041, 2635-0041Veröffentlicht: England Oxford University Press 2023Veröffentlicht in Bioinformatics advances (2023)“… Results We propose a robust Semi-supervised Cancer prognosis classifier with bAyesian variational autoeNcoder (SCAN …”
Volltext
Journal Article -
5
A mechanical fault diagnosis model with semi-supervised variational autoencoder based on long short-term memory network
ISSN: 0924-090X, 1573-269XVeröffentlicht: Dordrecht Springer Netherlands 01.01.2025Veröffentlicht in Nonlinear dynamics (01.01.2025)“… A mechanical fault diagnosis model with Semi-Supervised Variational Autoencoder based on Long Short-Term Memory network (LSTM-SSVAE …”
Volltext
Journal Article -
6
Partitioning variability in animal behavioral videos using semi-supervised variational autoencoders
ISSN: 1553-7358, 1553-734X, 1553-7358Veröffentlicht: United States Public Library of Science 22.09.2021Veröffentlicht in PLoS computational biology (22.09.2021)“… Recent neuroscience studies demonstrate that a deeper understanding of brain function requires a deeper understanding of behavior. Detailed behavioral …”
Volltext
Journal Article -
7
Developing semi-supervised variational autoencoder-generative adversarial network models to enhance quality prediction performance
ISSN: 0169-7439, 1873-3239Veröffentlicht: Elsevier B.V 15.10.2021Veröffentlicht in Chemometrics and intelligent laboratory systems (15.10.2021)“… Such discrepancy exists because of the time lag for obtaining quality data. This paper proposes semi-supervised variational autoencoder-generative adversarial network (S2-VAE/GAN …”
Volltext
Journal Article -
8
Semi-supervised Variational Autoencoder for WiFi Indoor Localization
ISSN: 2471-917XVeröffentlicht: IEEE 01.09.2019Veröffentlicht in International Conference on Indoor Positioning and Indoor Navigation (01.09.2019)“… We address the problem of indoor localization based on WiFi signal strengths. We develop a semi-supervised deep learning method able to train a prediction model …”
Volltext
Tagungsbericht -
9
Semi-Supervised Adversarial Variational Autoencoder
ISSN: 2504-4990, 2504-4990Veröffentlicht: MDPI 01.09.2020Veröffentlicht in Machine learning and knowledge extraction (01.09.2020)“… We present a method to improve the reconstruction and generation performance of a variational autoencoder (VAE …”
Volltext
Journal Article -
10
R/C buildings’ seismic damage prediction based on semi-supervised automatic differentiation variational inference deep autoencoder
ISSN: 1742-6588, 1742-6596Veröffentlicht: Bristol IOP Publishing 01.06.2024Veröffentlicht in Journal of physics. Conference series (01.06.2024)“… Structural damage from earthquakes has been assessed using a variety of methodologies, both statistical and, more recently, utilizing Machine Learning (ML) …”
Volltext
Journal Article -
11
Semi-Supervised Variational Autoencoders for Out-of-Distribution Generation
ISSN: 1099-4300, 1099-4300Veröffentlicht: Switzerland MDPI AG 14.12.2023Veröffentlicht in Entropy (Basel, Switzerland) (14.12.2023)“… ) data in a semi-supervised manner. Unlike previous approaches that use new factors of variation during testing, our method uses only existing attributes from the training data but in ways that were not seen during training (e.g., small objects of a specific shape during training and large objects of the same shape during testing) …”
Volltext
Journal Article -
12
Semi-supervised Variational Autoencoders for Regression: Application to Soft Sensors
ISSN: 2378-363XVeröffentlicht: IEEE 18.07.2023Veröffentlicht in IEEE International Conference on Industrial Informatics (INDIN) (18.07.2023)“… We present the development of a semi-supervised regression method using variational autoencoders (VAE …”
Volltext
Tagungsbericht -
13
Infinite Variational Autoencoder for Semi-Supervised Learning
ISSN: 1063-6919, 1063-6919Veröffentlicht: IEEE 01.07.2017Veröffentlicht in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (01.07.2017)“… This paper presents an infinite variational autoencoder (VAE) whose capacity adapts to suit the input data …”
Volltext
Tagungsbericht -
14
Semi-Supervised Variational Autoencoder for Cell Feature Extraction In Multiplexed Immunofluorescence Images
ISSN: 1945-8452Veröffentlicht: IEEE 27.05.2024Veröffentlicht in Proceedings (International Symposium on Biomedical Imaging) (27.05.2024)“… We propose a deep learning-based cell feature extraction model using a variational autoencoder with supervision using a latent subspace to extract cell features in mIF images …”
Volltext
Tagungsbericht -
15
A Semi-supervised Gaussian Mixture Variational Autoencoder method for few-shot fine-grained fault diagnosis
ISSN: 0893-6080, 1879-2782, 1879-2782Veröffentlicht: United States Elsevier Ltd 01.10.2024Veröffentlicht in Neural networks (01.10.2024)“… To tackle those issue, we propose a novel semi-supervised Gaussian Mixed Variational Autoencoder method, SeGMVAE, aimed at acquiring unsupervised representations that can be transferred across fine …”
Volltext
Journal Article -
16
Semi-Supervised Deep Conditional Variational Autoencoder for Soft Sensor Modeling
ISSN: 1530-437X, 1558-1748Veröffentlicht: New York IEEE 01.03.2024Veröffentlicht in IEEE sensors journal (01.03.2024)“… Variational autoencoder (VAE) as an unsupervised deep generated model has been widely applied to process modeling for industrial processes due to its excellent ability in nonlinear and uncertain feature extraction …”
Volltext
Journal Article -
17
DAS-Accelerometer Data Fusion With Semi-Supervised Graph Variational Autoencoder for In-Service Train Wheel Flat Detection
ISSN: 1524-9050, 1558-0016Veröffentlicht: IEEE 2025Veröffentlicht in IEEE transactions on intelligent transportation systems (2025)“… To address these issues, this study introduces a semi-supervised learning workflow integrating multi-sensor data from Distributed Acoustic Sensing (DAS …”
Volltext
Journal Article -
18
SSL-VQ: vector-quantized variational autoencoders for semi-supervised prediction of therapeutic targets across diverse diseases
ISSN: 1367-4811, 1367-4803, 1367-4811Veröffentlicht: England Oxford University Press 04.02.2025Veröffentlicht in Bioinformatics (Oxford, England) (04.02.2025)“… rare diseases, intractable diseases). Results This study presents a novel machine learning approach using multimodal vector-quantized variational autoencoders (VQ-VAEs …”
Volltext
Journal Article -
19
Semi-supervised contrastive learning variational autoencoder Integrating single-cell multimodal mosaic datasets
ISSN: 1471-2105, 1471-2105Veröffentlicht: London BioMed Central 04.08.2025Veröffentlicht in BMC bioinformatics (04.08.2025)“… To address these challenges, we proposes a flexible integration framework based on Variational Autoencoder called scGCM …”
Volltext
Journal Article -
20
Semi-Supervised Channel Equalization Using Variational Autoencoders
ISSN: 1536-1276, 1558-2248Veröffentlicht: New York IEEE 01.12.2024Veröffentlicht in IEEE transactions on wireless communications (01.12.2024)“… We present methods for semi-supervised learning (SSL) from few pilots over nonlinear channels using variational autoencoders …”
Volltext
Journal Article