Suchergebnisse - Semi-supervised variational autoencoder~

  1. 1

    Fault diagnosis of power equipment based on variational autoencoder and semisupervised learning von Ye, Bo, Li, Feng, Zhang, Linghao, Chang, Zhengwei, Wang, Bin, Zhang, Xiaoyu, Bodanbai, Sayina

    ISSN: 1532-0626, 1532-0634
    Veröffentlicht: Hoboken Wiley Subscription Services, Inc 10.09.2024
    Veröffentlicht in Concurrency and computation (10.09.2024)
    “… ) method based on variational autoencoder and semisupervised learning is proposed in this paper …”
    Volltext
    Journal Article
  2. 2
  3. 3

    Exploring semi-supervised variational autoencoders for biomedical relation extraction von Zhang, Yijia, Lu, Zhiyong

    ISSN: 1046-2023, 1095-9130, 1095-9130
    Veröffentlicht: United States Elsevier Inc 15.08.2019
    Veröffentlicht in Methods (San Diego, Calif.) (15.08.2019)
    “… •A semi-supervised method is proposed based on variational autoencoders (VAE) for biomedical relation extraction …”
    Volltext
    Journal Article
  4. 4

    Learning from small medical data—robust semi-supervised cancer prognosis classifier with Bayesian variational autoencoder von Hsu, Te-Cheng, Lin, Che

    ISSN: 2635-0041, 2635-0041
    Veröffentlicht: England Oxford University Press 2023
    Veröffentlicht in Bioinformatics advances (2023)
    “… Results We propose a robust Semi-supervised Cancer prognosis classifier with bAyesian variational autoeNcoder (SCAN …”
    Volltext
    Journal Article
  5. 5

    A mechanical fault diagnosis model with semi-supervised variational autoencoder based on long short-term memory network von Qu, Yuanyuan, Li, Tao, Fu, Shichen, Wang, Zhisheng, Chen, Jian, Zhang, Yupeng

    ISSN: 0924-090X, 1573-269X
    Veröffentlicht: Dordrecht Springer Netherlands 01.01.2025
    Veröffentlicht in Nonlinear dynamics (01.01.2025)
    “… A mechanical fault diagnosis model with Semi-Supervised Variational Autoencoder based on Long Short-Term Memory network (LSTM-SSVAE …”
    Volltext
    Journal Article
  6. 6

    Partitioning variability in animal behavioral videos using semi-supervised variational autoencoders von Whiteway, Matthew R., Biderman, Dan, Friedman, Yoni, Dipoppa, Mario, Buchanan, E. Kelly, Wu, Anqi, Zhou, John, Bonacchi, Niccolò, Miska, Nathaniel J., Noel, Jean-Paul, Rodriguez, Erica, Schartner, Michael, Socha, Karolina, Urai, Anne E., Salzman, C. Daniel, Cunningham, John P., Paninski, Liam

    ISSN: 1553-7358, 1553-734X, 1553-7358
    Veröffentlicht: United States Public Library of Science 22.09.2021
    Veröffentlicht in PLoS computational biology (22.09.2021)
    “… Recent neuroscience studies demonstrate that a deeper understanding of brain function requires a deeper understanding of behavior. Detailed behavioral …”
    Volltext
    Journal Article
  7. 7

    Developing semi-supervised variational autoencoder-generative adversarial network models to enhance quality prediction performance von Ooi, Sai Kit, Tanny, Dave, Chen, Junghui, Wang, Kai

    ISSN: 0169-7439, 1873-3239
    Veröffentlicht: Elsevier B.V 15.10.2021
    Veröffentlicht in Chemometrics and intelligent laboratory systems (15.10.2021)
    “… Such discrepancy exists because of the time lag for obtaining quality data. This paper proposes semi-supervised variational autoencoder-generative adversarial network (S2-VAE/GAN …”
    Volltext
    Journal Article
  8. 8

    Semi-supervised Variational Autoencoder for WiFi Indoor Localization von Chidlovskii, Boris, Antsfeld, Leonid

    ISSN: 2471-917X
    Veröffentlicht: IEEE 01.09.2019
    “… We address the problem of indoor localization based on WiFi signal strengths. We develop a semi-supervised deep learning method able to train a prediction model …”
    Volltext
    Tagungsbericht
  9. 9

    Semi-Supervised Adversarial Variational Autoencoder von Zemouri, Ryad

    ISSN: 2504-4990, 2504-4990
    Veröffentlicht: MDPI 01.09.2020
    Veröffentlicht in Machine learning and knowledge extraction (01.09.2020)
    “… We present a method to improve the reconstruction and generation performance of a variational autoencoder (VAE …”
    Volltext
    Journal Article
  10. 10

    R/C buildings’ seismic damage prediction based on semi-supervised automatic differentiation variational inference deep autoencoder von Demertzis, K, Kostinakis, K, Morfidis, K, Iliadis, L

    ISSN: 1742-6588, 1742-6596
    Veröffentlicht: Bristol IOP Publishing 01.06.2024
    Veröffentlicht in Journal of physics. Conference series (01.06.2024)
    “… Structural damage from earthquakes has been assessed using a variety of methodologies, both statistical and, more recently, utilizing Machine Learning (ML) …”
    Volltext
    Journal Article
  11. 11

    Semi-Supervised Variational Autoencoders for Out-of-Distribution Generation von Lavda, Frantzeska, Kalousis, Alexandros

    ISSN: 1099-4300, 1099-4300
    Veröffentlicht: Switzerland MDPI AG 14.12.2023
    Veröffentlicht in Entropy (Basel, Switzerland) (14.12.2023)
    “… ) data in a semi-supervised manner. Unlike previous approaches that use new factors of variation during testing, our method uses only existing attributes from the training data but in ways that were not seen during training (e.g., small objects of a specific shape during training and large objects of the same shape during testing) …”
    Volltext
    Journal Article
  12. 12

    Semi-supervised Variational Autoencoders for Regression: Application to Soft Sensors von Zhuang, Yilin, Zhou, Zhuobin, Alakent, Burak, Mercangoz, Mehmet

    ISSN: 2378-363X
    Veröffentlicht: IEEE 18.07.2023
    “… We present the development of a semi-supervised regression method using variational autoencoders (VAE …”
    Volltext
    Tagungsbericht
  13. 13

    Infinite Variational Autoencoder for Semi-Supervised Learning von Abbasnejad, M. Ehsan, Dick, Anthony, van den Hengel, Anton

    ISSN: 1063-6919, 1063-6919
    Veröffentlicht: IEEE 01.07.2017
    “… This paper presents an infinite variational autoencoder (VAE) whose capacity adapts to suit the input data …”
    Volltext
    Tagungsbericht
  14. 14

    Semi-Supervised Variational Autoencoder for Cell Feature Extraction In Multiplexed Immunofluorescence Images von Sandarenu, Piumi, Chen, Julia, Slapetova, Iveta, Browne, Lois, Graham, Peter H., Swarbrick, Alexander, Millar, Ewan K.A., Song, Yang, Meijering, Erik

    ISSN: 1945-8452
    Veröffentlicht: IEEE 27.05.2024
    “… We propose a deep learning-based cell feature extraction model using a variational autoencoder with supervision using a latent subspace to extract cell features in mIF images …”
    Volltext
    Tagungsbericht
  15. 15

    A Semi-supervised Gaussian Mixture Variational Autoencoder method for few-shot fine-grained fault diagnosis von Zhao, Zhiqian, Xu, Yeyin, Zhang, Jiabin, Zhao, Runchao, Chen, Zhaobo, Jiao, Yinghou

    ISSN: 0893-6080, 1879-2782, 1879-2782
    Veröffentlicht: United States Elsevier Ltd 01.10.2024
    Veröffentlicht in Neural networks (01.10.2024)
    “… To tackle those issue, we propose a novel semi-supervised Gaussian Mixed Variational Autoencoder method, SeGMVAE, aimed at acquiring unsupervised representations that can be transferred across fine …”
    Volltext
    Journal Article
  16. 16

    Semi-Supervised Deep Conditional Variational Autoencoder for Soft Sensor Modeling von Tang, Xiaochu, Yan, Jiawei, Li, Yuan, Zhang, Xinmin, Song, Zhihuan

    ISSN: 1530-437X, 1558-1748
    Veröffentlicht: New York IEEE 01.03.2024
    Veröffentlicht in IEEE sensors journal (01.03.2024)
    “… Variational autoencoder (VAE) as an unsupervised deep generated model has been widely applied to process modeling for industrial processes due to its excellent ability in nonlinear and uncertain feature extraction …”
    Volltext
    Journal Article
  17. 17

    DAS-Accelerometer Data Fusion With Semi-Supervised Graph Variational Autoencoder for In-Service Train Wheel Flat Detection von Dong, Yiqing, Han, Chengjia, Qu, Shuai, Zhao, Chaoyang, Madan, Aayush, Fu, Yuguang, Yang, Yaowen

    ISSN: 1524-9050, 1558-0016
    Veröffentlicht: IEEE 2025
    “… To address these issues, this study introduces a semi-supervised learning workflow integrating multi-sensor data from Distributed Acoustic Sensing (DAS …”
    Volltext
    Journal Article
  18. 18

    SSL-VQ: vector-quantized variational autoencoders for semi-supervised prediction of therapeutic targets across diverse diseases von Namba, Satoko, Li, Chen, Yuyama Otani, Noriko, Yamanishi, Yoshihiro

    ISSN: 1367-4811, 1367-4803, 1367-4811
    Veröffentlicht: England Oxford University Press 04.02.2025
    Veröffentlicht in Bioinformatics (Oxford, England) (04.02.2025)
    “… rare diseases, intractable diseases). Results This study presents a novel machine learning approach using multimodal vector-quantized variational autoencoders (VQ-VAEs …”
    Volltext
    Journal Article
  19. 19

    Semi-supervised contrastive learning variational autoencoder Integrating single-cell multimodal mosaic datasets von Wang, Zihao, Wu, Zeyu, Deng, Minghua

    ISSN: 1471-2105, 1471-2105
    Veröffentlicht: London BioMed Central 04.08.2025
    Veröffentlicht in BMC bioinformatics (04.08.2025)
    “… To address these challenges, we proposes a flexible integration framework based on Variational Autoencoder called scGCM …”
    Volltext
    Journal Article
  20. 20

    Semi-Supervised Channel Equalization Using Variational Autoencoders von Burshtein, David, Bery, Eli

    ISSN: 1536-1276, 1558-2248
    Veröffentlicht: New York IEEE 01.12.2024
    Veröffentlicht in IEEE transactions on wireless communications (01.12.2024)
    “… We present methods for semi-supervised learning (SSL) from few pilots over nonlinear channels using variational autoencoders …”
    Volltext
    Journal Article