Výsledky vyhledávání - Projected sub-gradient algorithm

  1. 1

    Efficient spectrum scheduling and power management for opportunistic users Autor Masmoudi, Raouia, Belmega, E. Veronica, Fijalkow, Inbar

    ISSN: 1687-1499, 1687-1472, 1687-1499
    Vydáno: Cham Springer International Publishing 11.04.2016
    “…In this paper, we study the centralized spectrum access and power management for several opportunistic users, secondary users (SUs), without hurting the…”
    Získat plný text
    Journal Article
  2. 2

    Distributed Unbalanced Optimization Design Over Nonidentical Constraints Autor Huang, Qing, Fan, Yuan, Cheng, Songsong

    ISSN: 2327-4697, 2334-329X
    Vydáno: Piscataway IEEE 01.07.2024
    “… To solve the problem, we introduce the distributed projected sub-gradient algorithm with a row-stochastic weight matrix over unbalanced digraphs…”
    Získat plný text
    Journal Article
  3. 3

    Efficient Design of Multi-group Multicast Beamforming via Reconfigurable Intelligent Surface Autor Ebrahimi, Mohammad, Dong, Min

    ISSN: 2576-2303
    Vydáno: IEEE 29.10.2023
    “…). We propose a fast and scalable algorithm for the joint design of the base station (BS) multicast beamforming and the RIS passive beamforming to minimize the transmit power subject to the quality-of-service (QoS) constraints…”
    Získat plný text
    Konferenční příspěvek
  4. 4

    Projection-Free Non-Smooth Convex Programming Autor Asgari, Kamiar, Neely, Michael J

    ISSN: 2331-8422
    Vydáno: Ithaca Cornell University Library, arXiv.org 15.06.2023
    Vydáno v arXiv.org (15.06.2023)
    “… Thus, the proposed algorithm is a projection-free alternative to the Projected sub-Gradient Descent (PGD…”
    Získat plný text
    Paper
  5. 5

    Distributed Nonsmooth Optimization With Coupled Inequality Constraints via Modified Lagrangian Function Autor Liang, Shu, Zeng, Xianlin, Hong, Yiguang

    ISSN: 0018-9286, 1558-2523
    Vydáno: IEEE 01.06.2018
    “… Then, we construct a distributed continuous-time algorithm by virtue of a projected primal-dual subgradient dynamics…”
    Získat plný text
    Journal Article
  6. 6

    Policy-based Primal-Dual Methods for Concave CMDP with Variance Reduction Autor Ying, Donghao, Guo, Mengzi Amy, Lee, Hyunin, Ding, Yuhao, Lavaei, Javad, Shen, Zuo-Jun Max

    ISSN: 1076-9757, 1076-9757
    Vydáno: 01.01.2025
    “… We propose the Variance-Reduced Primal-Dual Policy Gradient Algorithm (VR-PDPG), which updates the primal variable via policy gradient ascent and the dual variable via projected sub-gradient descent…”
    Získat plný text
    Journal Article
  7. 7

    New Projected Gradient Method to Solve Variational Inequality Problem Autor Shan, Zachary

    Vydáno: IEEE 23.06.2023
    “… We introduce a generalized sub gradient projection operator that expands the search range of each iteration of the algorithm…”
    Získat plný text
    Konferenční příspěvek
  8. 8

    Projected sub-gradient with ℓ1 or simplex constraints via isotonic regression Autor Thai, Jerome, Wu, Cathy, Pozdnukhov, Alexey, Bayen, Alexandre

    Vydáno: IEEE 01.12.2015
    “… methods which compare well against projected algorithms using direct…”
    Získat plný text
    Konferenční příspěvek
  9. 9

    Scalable algorithms for locally low-rank matrix modeling Autor Gu, Qilong, Trzasko, Joshua D., Banerjee, Arindam

    ISSN: 0219-1377, 0219-3116
    Vydáno: London Springer London 01.12.2019
    Vydáno v Knowledge and information systems (01.12.2019)
    “… In this paper, we consider a convex relaxation of LLR structure and propose an efficient algorithm based on dual projected gradient descent (D-PGD…”
    Získat plný text
    Journal Article
  10. 10

    Kernel-Based Adaptive Online Reconstruction of Coverage Maps With Side Information Autor Kasparick, Martin, Cavalcante, Renato L. G., Valentin, Stefan, Stanczak, Slawomir, Yukawa, Masahiro

    ISSN: 0018-9545, 1939-9359
    Vydáno: New York IEEE 01.07.2016
    “… The proposed algorithms are application-tailored extensions of powerful iterative methods such as the adaptive projected subgradient method (APSM…”
    Získat plný text
    Journal Article
  11. 11

    Exploiting Locality and Structure for Distributed Optimization in Multi-Agent Systems Autor Brown, Robin, Rossi, Federico, Solovey, Kiril, Wolf, Michael T., Pavone, Marco

    Vydáno: EUCA 01.05.2020
    “… Nevertheless, existing algorithms for distributed optimization generally do not exploit the locality structure of the problem, requiring all agents to compute or exchange the full set of decision variables…”
    Získat plný text
    Konferenční příspěvek
  12. 12

    Computationally Efficient and Statistically Optimal Robust High-Dimensional Linear Regression Autor Shen, Yinan, Li, Jingyang, Jian-Feng, Cai, Xia, Dong

    ISSN: 2331-8422
    Vydáno: Ithaca Cornell University Library, arXiv.org 10.05.2023
    Vydáno v arXiv.org (10.05.2023)
    “… In this paper, we introduce a projected sub-gradient descent algorithm for both the sparse linear regression and low-rank linear regression problems…”
    Získat plný text
    Paper
  13. 13

    An Improved Linear Discriminant Analysis with L1-Norm for Robust Feature Extraction Autor Xiaobo Chen, Jian Yang, Zhong Jin

    ISSN: 1051-4651
    Vydáno: IEEE 01.08.2014
    “… To address this issue, we develop a novel algorithm termed as ILDA-L1 in this paper, which can optimize all the discriminant vectors simultaneously in a unified framework…”
    Získat plný text
    Konferenční příspěvek
  14. 14

    Binary Iterative Hard Thresholding Converges with Optimal Number of Measurements for 1-Bit Compressed Sensing Autor Matsumoto, Namiko, Mazumdar, Arya

    ISSN: 2331-8422
    Vydáno: Ithaca Cornell University Library, arXiv.org 07.07.2022
    Vydáno v arXiv.org (07.07.2022)
    “…Compressed sensing has been a very successful high-dimensional signal acquisition and recovery technique that relies on linear operations. However, the actual…”
    Získat plný text
    Paper
  15. 15

    Distributed Robust Optimization in Networked System Autor Wang, Shengnan, Li, Chunguang

    ISSN: 2168-2267, 2168-2275, 2168-2275
    Vydáno: United States IEEE 01.08.2017
    Vydáno v IEEE transactions on cybernetics (01.08.2017)
    “…In this paper, we consider a distributed robust optimization (DRO) problem, where multiple agents in a networked system cooperatively minimize a global convex…”
    Získat plný text
    Journal Article
  16. 16

    Quantile and pseudo-Huber Tensor Decomposition Autor Shen, Yinan, Xia, Dong

    ISSN: 2331-8422
    Vydáno: Ithaca Cornell University Library, arXiv.org 06.09.2023
    Vydáno v arXiv.org (06.09.2023)
    “… We propose a projected sub-gradient descent algorithm for tensor decomposition, equipped with either the pseudo-Huber loss or the quantile loss…”
    Získat plný text
    Paper
  17. 17

    Implicit Bias of Projected Subgradient Method Gives Provable Robust Recovery of Subspaces of Unknown Codimension Autor Giampouras, Paris V, Haeffele, Benjamin D, Vidal, René

    ISSN: 2331-8422
    Vydáno: Ithaca Cornell University Library, arXiv.org 22.01.2022
    Vydáno v arXiv.org (22.01.2022)
    “…Robust subspace recovery (RSR) is a fundamental problem in robust representation learning. Here we focus on a recently proposed RSR method termed Dual…”
    Získat plný text
    Paper
  18. 18

    Proximal-Gen for fast compressed sensing recovery Autor Cai, Lei, Fu, Yuli, Zhu, Tao, Xiang, Youjun, Zeng, Huanqiang

    ISSN: 1047-3203, 1095-9076
    Vydáno: Elsevier Inc 01.01.2022
    “… Then based on the general domain, we develop a fast recovery algorithm, which mainly consists of two sub-algorithms, namely network-based projected gradient descent…”
    Získat plný text
    Journal Article
  19. 19

    Robustness of DC Power Networks under Weight Control Autor Ba, Qin, Savla, Ketan

    ISSN: 2331-8422
    Vydáno: Ithaca Cornell University Library, arXiv.org 18.10.2016
    Vydáno v arXiv.org (18.10.2016)
    “…We study, possibly distributed, robust weight control policies for DC power networks that change link susceptances, or weights in response to balanced…”
    Získat plný text
    Paper
  20. 20

    Scalable Algorithms for Locally Low-Rank Matrix Modeling Autor Qilong Gu, Trzasko, Joshua D., Banerjee, Arindam

    ISSN: 2374-8486
    Vydáno: IEEE 01.11.2017
    “… In this paper, we consider a convex relaxation of LLR structure, and propose an efficient algorithm based on dual projected gradient descent (D-PGD…”
    Získat plný text
    Konferenční příspěvek