Výsledky vyhľadávania - Predicting the arrest using Random forest Algorithm

  1. 1

    An Algorithm Based on Deep Learning for Predicting In‐Hospital Cardiac Arrest Autor Kwon, Joon‐myoung, Lee, Youngnam, Lee, Yeha, Lee, Seungwoo, Park, Jinsik

    ISSN: 2047-9980, 2047-9980
    Vydavateľské údaje: England John Wiley and Sons Inc 03.07.2018
    “… The result was tested using the data from February to July 2017. The primary outcome was cardiac arrest, and the secondary outcome was death without attempted resuscitation…”
    Získať plný text
    Journal Article
  2. 2

    Risk of mortality and cardiopulmonary arrest in critical patients presenting to the emergency department using machine learning and natural language processing Autor Fernandes, Marta, Mendes, Rúben, Vieira, Susana M., Leite, Francisca, Palos, Carlos, Johnson, Alistair, Finkelstein, Stan, Horng, Steven, Celi, Leo Anthony

    ISSN: 1932-6203, 1932-6203
    Vydavateľské údaje: United States Public Library of Science 02.04.2020
    Vydané v PloS one (02.04.2020)
    “…-mortality and cardiopulmonary arrest. Our study cohort consisted of 235826 adult patients triaged at a Portuguese Emergency Department from 2012 to 2016…”
    Získať plný text
    Journal Article
  3. 3

    Random forest machine learning method outperforms prehospital National Early Warning Score for predicting one-day mortality: A retrospective study Autor Pirneskoski, Jussi, Tamminen, Joonas, Kallonen, Antti, Nurmi, Jouni, Kuisma, Markku, Olkkola, Klaus T., Hoppu, Sanna

    ISSN: 2666-5204, 2666-5204
    Vydavateľské údaje: Netherlands Elsevier B.V 01.12.2020
    Vydané v Resuscitation plus (01.12.2020)
    “… Thus, we aimed to compare the mortality prediction accuracy of NEWS and random forest machine learning using prehospital vital signs…”
    Získať plný text
    Journal Article
  4. 4

    Multicenter Comparison of Machine Learning Methods and Conventional Regression for Predicting Clinical Deterioration on the Wards Autor Churpek, Matthew M, Yuen, Trevor C, Winslow, Christopher, Meltzer, David O, Kattan, Michael W, Edelson, Dana P

    ISSN: 1530-0293
    Vydavateľské údaje: United States 01.02.2016
    Vydané v Critical care medicine (01.02.2016)
    “… arrest, intensive care unit transfer, or death. Two logistic regression models (one using linear predictor terms and a second utilizing restricted cubic splines…”
    Zistit podrobnosti o prístupe
    Journal Article
  5. 5

    Urine output as one of the most important features in differentiating in-hospital death among patients receiving extracorporeal membrane oxygenation: a random forest approach Autor Chang, Sheng-Nan, Hu, Nian-Ze, Wu, Jo-Hsuan, Cheng, Hsun-Mao, Caffrey, James L., Yu, Hsi-Yu, Chen, Yih-Sharng, Hsu, Jiun, Lin, Jou-Wei

    ISSN: 2047-783X, 0949-2321, 2047-783X
    Vydavateľské údaje: London BioMed Central 15.09.2023
    Vydané v European journal of medical research (15.09.2023)
    “… The discriminatory power (DP) for predicting in-hospital mortality was tested using both random forest (RF…”
    Získať plný text
    Journal Article
  6. 6

    Explainable machine learning model based on EEG, ECG, and clinical features for predicting neurological outcomes in cardiac arrest patient Autor Niu, Yanxiang, Chen, Xin, Fan, Jianqi, Liu, Chunli, Fang, Menghao, Liu, Ziquan, Meng, Xiangyan, Liu, Yanqing, Lu, Lu, Fan, Haojun

    ISSN: 2045-2322, 2045-2322
    Vydavateľské údaje: London Nature Publishing Group UK 03.04.2025
    Vydané v Scientific reports (03.04.2025)
    “… Using the I-CARE database, we analyzed EEG, ECG, and clinical data from comatose cardiac arrest patients…”
    Získať plný text
    Journal Article
  7. 7

    A Method for Predicting Cardiovascular Disorder using Machine Learning Techniques Autor Hegde, Ramakrishna, Pavithra, D R, Shivashankara, S, Prasanna Kumar, G, Soumyasri, S M, Nagashree, S

    Vydavateľské údaje: IEEE 21.11.2024
    “… In most of these cases people experience cardiac arrest, some of which are normal. First, families of patients are vulnerable because it takes only a few minutes for a person to die of a heart attack, and it is difficult to get medical help in time…”
    Získať plný text
    Konferenčný príspevok..
  8. 8

    Machine Learning Models for Predicting in-Hospital Cardiac Arrest: A Comparative Analysis with Logistic Regression Autor Chang, Wei-Shan, Hsiao, Kai-Yuan, Lin, Lian-Yu, Chen, MingChih, Shia, Ben-Chang, Lin, Chung-Yu

    ISSN: 1178-7074, 1178-7074
    Vydavateľské údaje: New Zealand Dove Medical Press Limited 01.01.2025
    “…To develop and compare multiple machine learning (ML) algorithms with traditional logistic regression for predicting in-hospital cardiac arrest (IHCA…”
    Získať plný text
    Journal Article
  9. 9

    Application of machine learning techniques to predict rupture propagation and arrest in 2-D dynamic earthquake simulations Autor Ahamed, Sabber, Daub, Eric G

    ISSN: 0956-540X, 1365-246X
    Vydavateľské údaje: Oxford University Press 01.03.2021
    Vydané v Geophysical journal international (01.03.2021)
    “… Two models have been developed using neural networks and the random forest to predict if a rupture can break 2-D geometrically complex fault…”
    Získať plný text
    Journal Article
  10. 10

    Development and validation of a machine learning model for predicting mortality risk in veno-arterial extracorporeal membrane oxygenation patients Autor Gao, Hanming, Huang, Xiaolin, Zhou, Kaihuan, Ling, Yicong, Chen, Yin, Mou, Chenglin, Li, Shuanglei, Lu, Junyu

    ISSN: 2045-2322, 2045-2322
    Vydavateľské údaje: London Nature Publishing Group UK 24.11.2025
    Vydané v Scientific reports (24.11.2025)
    “… mortality.Feature selection was conducted using Lasso regression…”
    Získať plný text
    Journal Article
  11. 11

    Developing a Machine Learning Model for Predicting 30-Day Major Adverse Cardiac and Cerebrovascular Events in Patients Undergoing Noncardiac Surgery: Retrospective Study Autor Kwun, Ju-Seung, Ahn, Houng-Beom, Kang, Si-Hyuck, Yoo, Sooyoung, Kim, Seok, Song, Wongeun, Hyun, Junho, Oh, Ji Seon, Baek, Gakyoung, Suh, Jung-Won

    ISSN: 1438-8871, 1439-4456, 1438-8871
    Vydavateľské údaje: Canada Gunther Eysenbach MD MPH, Associate Professor 09.04.2025
    Vydané v Journal of medical Internet research (09.04.2025)
    “… and manage medical costs more efficiently. This study aimed to use the Observational Medical Outcomes Partnership Common Data Model to develop a predictive model by applying machine learning algorithms that can effectively predict major…”
    Získať plný text
    Journal Article
  12. 12

    Predicting Arrest Release Outcomes: A Comparative Analysis of Machine Learning Models Autor Adebayo, O. P., Ibrahim, Ahmed, Oyeleke, K.T.

    ISSN: 1812-125X, 2664-2530
    Vydavateľské údaje: College of Education for Pure Sciences 01.10.2025
    “…This comparative study evaluates machine learning models for predicting arrest release outcomes using 5,226 marijuana possession cases from the Toronto Police Service (1997-2002…”
    Získať plný text
    Journal Article
  13. 13

    Prognostic machine learning models for predicting postoperative complications following general surgery in Bandar Abbas, Iran: a study protocol Autor Vatankhah Tarbebar, Majid, Mohammadi, Milad, Mehrnoush, Vahid, Darsareh, Fatemeh

    ISSN: 2044-6055, 2044-6055
    Vydavateľské údaje: England British Medical Journal Publishing Group 28.10.2025
    Vydané v BMJ open (28.10.2025)
    “… Subsequently, we will apply machine learning (ML) algorithms to build risk factor prediction models that will assist surgeons in identifying the risk factors associated with the development of postoperative complications after general…”
    Získať plný text
    Journal Article
  14. 14

    Standardized visual EEG features predict outcome in patients with acute consciousness impairment of various etiologies Autor Müller, Michael, Rossetti, Andrea O., Zimmermann, Rebekka, Alvarez, Vincent, Rüegg, Stephan, Haenggi, Matthias, Z’Graggen, Werner J., Schindler, Kaspar, Zubler, Frédéric

    ISSN: 1364-8535, 1466-609X, 1364-8535, 1366-609X, 1466-609X
    Vydavateľské údaje: London BioMed Central 07.12.2020
    Vydané v Critical care (London, England) (07.12.2020)
    “… Random forest classifiers were trained using 8 visual EEG features—first alone, then in combination with clinical features…”
    Získať plný text
    Journal Article
  15. 15

    Comparison of Machine Learning Methods for Predicting Outcomes After In-Hospital Cardiac Arrest Autor Mayampurath, Anoop, Hagopian, Raffi, Venable, Laura, Carey, Kyle, Edelson, Dana, Churpek, Matthew

    ISSN: 1530-0293, 1530-0293
    Vydavateľské údaje: United States 01.02.2022
    Vydané v Critical care medicine (01.02.2022)
    “… Although models such as the Cardiac Arrest Survival Post-Resuscitation In-hospital score are useful for predicting neurologic outcomes, they were developed using traditional statistical techniques…”
    Zistit podrobnosti o prístupe
    Journal Article
  16. 16

    Computationally Efficient Early Prognosis of the Outcome of Comatose Cardiac Arrest Survivors Using Slow-Wave Activity Features in EEG Autor Salminen, Miikka, Partala, Juha, Vayrynen, Eero, Kortelainen, Jukka

    ISSN: 2325-887X
    Vydavateľské údaje: CinC 01.10.2023
    Vydané v Computing in cardiology (01.10.2023)
    “… Authors' team Cerenion developed a random forest based machine learning algorithm. A feature set of channel-by-channel root mean square power of a well-described neurophysiological EEG phenomenon called slow-wave activity (SWA…”
    Získať plný text
    Konferenčný príspevok..
  17. 17

    Towards comparing and using Machine Learning techniques for detecting and predicting Heart Attack and Diseases Autor Obasi, Thankgod, Omair Shafiq, M.

    Vydavateľské údaje: IEEE 01.12.2019
    “… This knowledge can be acquired using various data mining techniques to mine knowledge by designing models from the medical records dataset…”
    Získať plný text
    Konferenčný príspevok..
  18. 18

    Machine learning models for predicting in-hospital mortality in patient with sepsis: Analysis of vital sign dynamics Autor Cheng, Chi-Yung, Kung, Chia-Te, Chen, Fu-Cheng, Chiu, I-Min, Lin, Chun-Hung Richard, Chu, Chun-Chieh, Kung, Chien Feng, Su, Chih-Min

    ISSN: 2296-858X, 2296-858X
    Vydavateľské údaje: Lausanne Frontiers Media SA 20.10.2022
    Vydané v Frontiers in medicine (20.10.2022)
    “…PurposeTo build machine learning models for predicting the risk of in-hospital death in patients with sepsis within 48 h, using only dynamic changes in the patient's vital…”
    Získať plný text
    Journal Article
  19. 19

    Predicting Myocardial Rupture after Acute Myocardial Infarction in Hospitalized Patients using Machine Learning Autor Azwari, Sana Al

    Vydavateľské údaje: IEEE 27.03.2021
    “… That is also the reason why coronary artery diseases, including MI, cardiac arrest, and heart failure, have been labeled a disease of senior citizens…”
    Získať plný text
    Konferenčný príspevok..
  20. 20

    A machine learning model for predicting short‐term outcomes after rapid response system activation Autor Naito, Takaki, Li, Micheal, Fujitani, Shigeki

    ISSN: 2052-8817, 2052-8817
    Vydavateľské údaje: United States John Wiley & Sons, Inc 12.08.2025
    Vydané v Acute medicine & surgery (12.08.2025)
    “… To develop the eXtreme Gradient Boosted Tree Classifier (XGB) and Random Forest (RF) algorithms, a logistic…”
    Získať plný text
    Journal Article