Výsledky vyhľadávania - Predicting the arrest using Random forest Algorithm
-
1
An Algorithm Based on Deep Learning for Predicting In‐Hospital Cardiac Arrest
ISSN: 2047-9980, 2047-9980Vydavateľské údaje: England John Wiley and Sons Inc 03.07.2018Vydané v Journal of the American Heart Association (03.07.2018)“… The result was tested using the data from February to July 2017. The primary outcome was cardiac arrest, and the secondary outcome was death without attempted resuscitation…”
Získať plný text
Journal Article -
2
Risk of mortality and cardiopulmonary arrest in critical patients presenting to the emergency department using machine learning and natural language processing
ISSN: 1932-6203, 1932-6203Vydavateľské údaje: United States Public Library of Science 02.04.2020Vydané v PloS one (02.04.2020)“…-mortality and cardiopulmonary arrest. Our study cohort consisted of 235826 adult patients triaged at a Portuguese Emergency Department from 2012 to 2016…”
Získať plný text
Journal Article -
3
Random forest machine learning method outperforms prehospital National Early Warning Score for predicting one-day mortality: A retrospective study
ISSN: 2666-5204, 2666-5204Vydavateľské údaje: Netherlands Elsevier B.V 01.12.2020Vydané v Resuscitation plus (01.12.2020)“… Thus, we aimed to compare the mortality prediction accuracy of NEWS and random forest machine learning using prehospital vital signs…”
Získať plný text
Journal Article -
4
Multicenter Comparison of Machine Learning Methods and Conventional Regression for Predicting Clinical Deterioration on the Wards
ISSN: 1530-0293Vydavateľské údaje: United States 01.02.2016Vydané v Critical care medicine (01.02.2016)“… arrest, intensive care unit transfer, or death. Two logistic regression models (one using linear predictor terms and a second utilizing restricted cubic splines…”
Zistit podrobnosti o prístupe
Journal Article -
5
Urine output as one of the most important features in differentiating in-hospital death among patients receiving extracorporeal membrane oxygenation: a random forest approach
ISSN: 2047-783X, 0949-2321, 2047-783XVydavateľské údaje: London BioMed Central 15.09.2023Vydané v European journal of medical research (15.09.2023)“… The discriminatory power (DP) for predicting in-hospital mortality was tested using both random forest (RF…”
Získať plný text
Journal Article -
6
Explainable machine learning model based on EEG, ECG, and clinical features for predicting neurological outcomes in cardiac arrest patient
ISSN: 2045-2322, 2045-2322Vydavateľské údaje: London Nature Publishing Group UK 03.04.2025Vydané v Scientific reports (03.04.2025)“… Using the I-CARE database, we analyzed EEG, ECG, and clinical data from comatose cardiac arrest patients…”
Získať plný text
Journal Article -
7
A Method for Predicting Cardiovascular Disorder using Machine Learning Techniques
Vydavateľské údaje: IEEE 21.11.2024Vydané v 2024 International Conference on Recent Advances in Science and Engineering Technology (ICRASET) (21.11.2024)“… In most of these cases people experience cardiac arrest, some of which are normal. First, families of patients are vulnerable because it takes only a few minutes for a person to die of a heart attack, and it is difficult to get medical help in time…”
Získať plný text
Konferenčný príspevok.. -
8
Machine Learning Models for Predicting in-Hospital Cardiac Arrest: A Comparative Analysis with Logistic Regression
ISSN: 1178-7074, 1178-7074Vydavateľské údaje: New Zealand Dove Medical Press Limited 01.01.2025Vydané v International journal of general medicine (01.01.2025)“…To develop and compare multiple machine learning (ML) algorithms with traditional logistic regression for predicting in-hospital cardiac arrest (IHCA…”
Získať plný text
Journal Article -
9
Application of machine learning techniques to predict rupture propagation and arrest in 2-D dynamic earthquake simulations
ISSN: 0956-540X, 1365-246XVydavateľské údaje: Oxford University Press 01.03.2021Vydané v Geophysical journal international (01.03.2021)“… Two models have been developed using neural networks and the random forest to predict if a rupture can break 2-D geometrically complex fault…”
Získať plný text
Journal Article -
10
Development and validation of a machine learning model for predicting mortality risk in veno-arterial extracorporeal membrane oxygenation patients
ISSN: 2045-2322, 2045-2322Vydavateľské údaje: London Nature Publishing Group UK 24.11.2025Vydané v Scientific reports (24.11.2025)“… mortality.Feature selection was conducted using Lasso regression…”
Získať plný text
Journal Article -
11
Developing a Machine Learning Model for Predicting 30-Day Major Adverse Cardiac and Cerebrovascular Events in Patients Undergoing Noncardiac Surgery: Retrospective Study
ISSN: 1438-8871, 1439-4456, 1438-8871Vydavateľské údaje: Canada Gunther Eysenbach MD MPH, Associate Professor 09.04.2025Vydané v Journal of medical Internet research (09.04.2025)“… and manage medical costs more efficiently. This study aimed to use the Observational Medical Outcomes Partnership Common Data Model to develop a predictive model by applying machine learning algorithms that can effectively predict major…”
Získať plný text
Journal Article -
12
Predicting Arrest Release Outcomes: A Comparative Analysis of Machine Learning Models
ISSN: 1812-125X, 2664-2530Vydavateľské údaje: College of Education for Pure Sciences 01.10.2025Vydané v al-Tarbiyah wa-al-ʻilm lil-ʻulūm al-insānīyah : majallah ʻilmīyah muḥakkamah taṣduru ʻan Kullīyat al-Tarbiyah lil-ʻUlūm al-Insānīyah fī Jāmiʻat al-Mawṣil (01.10.2025)“…This comparative study evaluates machine learning models for predicting arrest release outcomes using 5,226 marijuana possession cases from the Toronto Police Service (1997-2002…”
Získať plný text
Journal Article -
13
Prognostic machine learning models for predicting postoperative complications following general surgery in Bandar Abbas, Iran: a study protocol
ISSN: 2044-6055, 2044-6055Vydavateľské údaje: England British Medical Journal Publishing Group 28.10.2025Vydané v BMJ open (28.10.2025)“… Subsequently, we will apply machine learning (ML) algorithms to build risk factor prediction models that will assist surgeons in identifying the risk factors associated with the development of postoperative complications after general…”
Získať plný text
Journal Article -
14
Standardized visual EEG features predict outcome in patients with acute consciousness impairment of various etiologies
ISSN: 1364-8535, 1466-609X, 1364-8535, 1366-609X, 1466-609XVydavateľské údaje: London BioMed Central 07.12.2020Vydané v Critical care (London, England) (07.12.2020)“… Random forest classifiers were trained using 8 visual EEG features—first alone, then in combination with clinical features…”
Získať plný text
Journal Article -
15
Comparison of Machine Learning Methods for Predicting Outcomes After In-Hospital Cardiac Arrest
ISSN: 1530-0293, 1530-0293Vydavateľské údaje: United States 01.02.2022Vydané v Critical care medicine (01.02.2022)“… Although models such as the Cardiac Arrest Survival Post-Resuscitation In-hospital score are useful for predicting neurologic outcomes, they were developed using traditional statistical techniques…”
Zistit podrobnosti o prístupe
Journal Article -
16
Computationally Efficient Early Prognosis of the Outcome of Comatose Cardiac Arrest Survivors Using Slow-Wave Activity Features in EEG
ISSN: 2325-887XVydavateľské údaje: CinC 01.10.2023Vydané v Computing in cardiology (01.10.2023)“… Authors' team Cerenion developed a random forest based machine learning algorithm. A feature set of channel-by-channel root mean square power of a well-described neurophysiological EEG phenomenon called slow-wave activity (SWA…”
Získať plný text
Konferenčný príspevok.. -
17
Towards comparing and using Machine Learning techniques for detecting and predicting Heart Attack and Diseases
Vydavateľské údaje: IEEE 01.12.2019Vydané v 2019 IEEE International Conference on Big Data (Big Data) (01.12.2019)“… This knowledge can be acquired using various data mining techniques to mine knowledge by designing models from the medical records dataset…”
Získať plný text
Konferenčný príspevok.. -
18
Machine learning models for predicting in-hospital mortality in patient with sepsis: Analysis of vital sign dynamics
ISSN: 2296-858X, 2296-858XVydavateľské údaje: Lausanne Frontiers Media SA 20.10.2022Vydané v Frontiers in medicine (20.10.2022)“…PurposeTo build machine learning models for predicting the risk of in-hospital death in patients with sepsis within 48 h, using only dynamic changes in the patient's vital…”
Získať plný text
Journal Article -
19
Predicting Myocardial Rupture after Acute Myocardial Infarction in Hospitalized Patients using Machine Learning
Vydavateľské údaje: IEEE 27.03.2021Vydané v 2021 National Computing Colleges Conference (NCCC) (27.03.2021)“… That is also the reason why coronary artery diseases, including MI, cardiac arrest, and heart failure, have been labeled a disease of senior citizens…”
Získať plný text
Konferenčný príspevok.. -
20
A machine learning model for predicting short‐term outcomes after rapid response system activation
ISSN: 2052-8817, 2052-8817Vydavateľské údaje: United States John Wiley & Sons, Inc 12.08.2025Vydané v Acute medicine & surgery (12.08.2025)“… To develop the eXtreme Gradient Boosted Tree Classifier (XGB) and Random Forest (RF) algorithms, a logistic…”
Získať plný text
Journal Article