Suchergebnisse - Physics-embedded algorithm structure
-
1
Physics-informed machine learning in prognostics and health management: State of the art and challenges
ISSN: 0307-904X, 1872-8480Veröffentlicht: Elsevier Inc 01.12.2023Veröffentlicht in Applied mathematical modelling (01.12.2023)“… •Systematic bibliometric analysis of PIML in PHM.•Novel perspectives for PIML from the “Informed knowledge forms” and “Informed methods”.•Taxonomy of PIML …”
Volltext
Journal Article -
2
A review of physics-informed machine learning for building energy modeling
ISSN: 0306-2619Veröffentlicht: Elsevier Ltd 01.03.2025Veröffentlicht in Applied energy (01.03.2025)“… ) algorithms in recent years, several challenges remain to apply these data-driven approaches in BEM, including the necessity of obtaining sufficient and high-quality training data in algorithm …”
Volltext
Journal Article -
3
Physics-embedded inverse analysis with algorithmic differentiation for the earth’s subsurface
ISSN: 2045-2322, 2045-2322Veröffentlicht: London Nature Publishing Group UK 13.01.2023Veröffentlicht in Scientific reports (13.01.2023)“… We use a physics-embedded generative model, which takes statistically simple parameters as input and outputs subsurface properties (e.g …”
Volltext
Journal Article -
4
Layered Soil Remote Sensing With Multichannel Passive Microwave Observations Using a Physics-Embedded Artificial Intelligence Framework: A Theoretical Study
ISSN: 0196-2892, 1558-0644Veröffentlicht: New York The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023Veröffentlicht in IEEE transactions on geoscience and remote sensing (2023)“… using multichannel passive microwave observations. To enhance the inversion efficiency and accuracy, a novel physics-embedded artificial neural network (P-ANN …”
Volltext
Journal Article -
5
Physics‐Embedded Machine Learning for Fatigue Cumulative Damage Prediction
ISSN: 8756-758X, 1460-2695Veröffentlicht: Oxford Wiley Subscription Services, Inc 01.10.2025Veröffentlicht in Fatigue & fracture of engineering materials & structures (01.10.2025)“… This study proposes an innovative physics‐embedded machine learning (ML) framework to enhance residual fatigue damage prediction by integrating the Manson–Halford (MH …”
Volltext
Journal Article -
6
Physics-embedded deep learning inversion for transient electromagnetic method survey data
ISSN: 0098-3004Veröffentlicht: Elsevier Ltd 01.10.2025Veröffentlicht in Computers & geosciences (01.10.2025)“… The transient electromagnetic method (TEM) is a widely used geophysical technique for investigating complex geological conditions. Deep learning (DL) provides …”
Volltext
Journal Article -
7
Layered Soil Remote Sensing with Multi-Channel Passive Microwave Observations Using A Physics Embedded Artificial Intelligence Framework: A Theoretical Study
ISSN: 0196-2892Veröffentlicht: IEEE 25.10.2023Veröffentlicht in IEEE transactions on geoscience and remote sensing (25.10.2023)“… using multi-channel passive microwave observations. To enhance the inversion efficiency and accuracy, a novel Physics-Embedded Artificial Neural Network (P-ANN …”
Volltext
Journal Article -
8
A physics-embedded deep-learning framework for efficient multi-fidelity modeling applied to guided wave based structural health monitoring
ISSN: 0041-624X, 1874-9968, 1874-9968Veröffentlicht: Netherlands Elsevier B.V 01.07.2024Veröffentlicht in Ultrasonics (01.07.2024)“… Health monitoring of structures using ultrasonic guided waves is an evolving technology with potential applications in monitoring pipelines, civil bridges, and aircraft components …”
Volltext
Journal Article -
9
Data-Driven Perovskite Design via High-Throughput Simulation and Machine Learning
ISSN: 2227-9717, 2227-9717Veröffentlicht: Basel MDPI AG 01.10.2025Veröffentlicht in Processes (01.10.2025)“… ) in accelerating perovskite discovery. By harnessing existing experimental datasets and high-throughput computational results, ML models elucidate structure-property relationships and predict performance metrics for solar cells, (photo …”
Volltext
Journal Article -
10
A Planar Array Synthesis Method Based on Deep Learning and Radiation Pattern Superposition Method
ISSN: 0018-926X, 1558-2221Veröffentlicht: New York IEEE 01.08.2025Veröffentlicht in IEEE transactions on antennas and propagation (01.08.2025)“… A dual-branched convolutional neural network (CNN) integrated with hybrid training criteria is proposed for real-time multibeam synthesis in planar uniform …”
Volltext
Journal Article -
11
Rings: An efficient Java/Scala library for polynomial rings
ISSN: 0010-4655, 1879-2944Veröffentlicht: Elsevier B.V 01.02.2019Veröffentlicht in Computer physics communications (01.02.2019)“… Rings can be easily interacted or embedded in applications in high-energy physics and other research areas via a simple API with fully typed hierarchy of algebraic structures and algorithms for commutative algebra …”
Volltext
Journal Article -
12
A Model-Driven Realization of AUV Controllers Based on the MDA/MBSE Approach
ISSN: 0197-6729, 2042-3195Veröffentlicht: Hindawi Limited 25.10.2020Veröffentlicht in Journal of Advanced Transportation (25.10.2020)Volltext
Journal Article -
13
Rings: an efficient Java/Scala library for polynomial rings
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 21.09.2018Veröffentlicht in arXiv.org (21.09.2018)“… \Rings can be easily interacted or embedded in applications in high-energy physics and other research areas via a simple API with fully typed hierarchy of algebraic structures and algorithms for commutative algebra …”
Volltext
Paper -
14
Computational techniques for studying protein-protein interactions
ISBN: 9780323902649, 0323902642Veröffentlicht: United States Elsevier Science & Technology 2022Veröffentlicht in Advances in Protein Molecular and Structural Biology Methods (2022)Volltext
Buchkapitel -
15
Chapter 9 - Computational techniques for studying protein-protein interactions
ISBN: 9780323902649, 9780323902656, 0323902650, 0323902642Veröffentlicht: Elsevier Inc 2022Veröffentlicht in Advances in Protein Molecular and Structural Biology Methods (2022)“… The developers, engineers, and scientists are working to develop algorithms and methodological strategies for PPIs analysis, where the laws …”
Volltext
Buchkapitel

