Suchergebnisse - Phase coherence graph autoencoder

  • Treffer 1 - 4 von 4
Treffer weiter einschränken
  1. 1

    Self-organizing dynamic research based on phase coherence graph autoencoders: Analysis of brain metastable states across the lifespan von Guo, Hao, Liu, Yu-Xuan, Li, Yao, Guo, Qi-Li, Hao, Zhi-Peng, Yang, Yan-Li, Wei, Jing

    ISSN: 1053-8119, 1095-9572, 1095-9572
    Veröffentlicht: United States Elsevier Inc 15.04.2025
    Veröffentlicht in NeuroImage (Orlando, Fla.) (15.04.2025)
    “… •Research on spatiotemporal self-organization throughout the entire lifespan.•Phase Coherent Graph Autoencoder framework determines the metastable brain states …”
    Volltext
    Journal Article
  2. 2

    Graph-informed convolutional autoencoder to classify brain responses during sleep von Zakeri, Sahar, Makouei, Somayeh, Danishvar, Sebelan

    ISSN: 1662-453X, 1662-4548, 1662-453X
    Veröffentlicht: Switzerland Frontiers Media S.A 28.04.2025
    Veröffentlicht in Frontiers in neuroscience (28.04.2025)
    “… The graphical representation was calculated from phase locking value, coherence, and phase-amplitude coupling …”
    Volltext
    Journal Article
  3. 3

    A Novel Method of Building Functional Brain Network Using Deep Learning Algorithm with Application in Proficiency Detection von Hua, Chengcheng, Wang, Hong, Wang, Hong, Lu, Shaowen, Liu, Chong, Khalid, Syed Madiha

    ISSN: 1793-6462, 1793-6462
    Veröffentlicht: Singapore 01.02.2019
    Veröffentlicht in International journal of neural systems (01.02.2019)
    “… To save the search time, a novel semi-data-driven method of computing functional brain connection based on stacked autoencoder (BCSAE …”
    Weitere Angaben
    Journal Article
  4. 4

    Generating 3D House Wireframes with Semantics von Ma, Xueqi, Liu, Yilin, Zhou, Wenjun, Wang, Ruowei, Huang, Hui

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 17.07.2024
    Veröffentlicht in arXiv.org (17.07.2024)
    “… Our two-phase technique merges a graph-based autoencoder with a transformer-based decoder to learn latent geometric tokens and generate semantic-aware wireframes …”
    Volltext
    Paper