Suchergebnisse - Multi-modal graph autoencoder
-
1
ZMGA: A ZINB-based multi-modal graph autoencoder enhancing topological consistency in single-cell clustering
ISSN: 1746-8094Veröffentlicht: Elsevier Ltd 01.11.2024Veröffentlicht in Biomedical signal processing and control (01.11.2024)“… To address these challenges, we introduce a topologically consistent multi-modal graph autoencoder …”
Volltext
Journal Article -
2
SDC-GAE: Structural Difference Compensation Graph Autoencoder for Unsupervised Multimodal Change Detection
ISSN: 0196-2892, 1558-0644Veröffentlicht: New York IEEE 2024Veröffentlicht in IEEE transactions on geoscience and remote sensing (2024)“… SDC-GAE utilizes a graph convolutional network (GCN) to extract deep structural features from multimodal images …”
Volltext
Journal Article -
3
Hybrid Graph Convolutional Network With Online Masked Autoencoder for Robust Multimodal Cancer Survival Prediction
ISSN: 0278-0062, 1558-254X, 1558-254XVeröffentlicht: United States IEEE 01.08.2023Veröffentlicht in IEEE transactions on medical imaging (01.08.2023)“… This manuscript proposes a novel hybrid graph convolutional network, entitled HGCN, which is equipped with an online masked autoencoder paradigm for robust multimodal cancer survival prediction …”
Volltext
Journal Article -
4
Multi-modal graph convolutional network for vessel trajectory prediction based on cooperative intention enhance using conditional variational autoencoder
ISSN: 0951-8320Veröffentlicht: Elsevier Ltd 01.03.2026Veröffentlicht in Reliability engineering & system safety (01.03.2026)“… of trajectory prediction. To address these challenges, we propose a cooperative intention enhance multi-modal graph convolutional network (CIE-MGCN …”
Volltext
Journal Article -
5
Graph2MDA: a multi-modal variational graph embedding model for predicting microbe–drug associations
ISSN: 1367-4803, 1367-4811, 1460-2059, 1367-4811Veröffentlicht: England Oxford University Press 27.01.2022Veröffentlicht in Bioinformatics (27.01.2022)“… –drug associations by using variational graph autoencoder (VGAE). We constructed multi-modal attributed graphs based on multiple features of microbes and drugs, such as molecular …”
Volltext
Journal Article -
6
Variational graph autoencoder-driven balancing strategy for multimodal multi-objective optimization
ISSN: 0020-0255Veröffentlicht: Elsevier Inc 01.09.2025Veröffentlicht in Information sciences (01.09.2025)“… Therefore, this paper proposes a multimodal multi-objective evolutionary algorithm driven by variational graph autoencoder (VGAE …”
Volltext
Journal Article -
7
MAVGAE: a multimodal framework for predicting asymmetric drug-drug interactions based on variational graph autoencoder
ISSN: 1025-5842, 1476-8259, 1476-8259Veröffentlicht: England Taylor & Francis 19.05.2025Veröffentlicht in Computer methods in biomechanics and biomedical engineering (19.05.2025)“… Drug-drug interactions refer to the phenomena wherein the potency, duration, or effectiveness of one or multiple drugs undergo alterations of varying degrees …”
Volltext
Journal Article -
8
Radiation therapy response prediction for head and neck cancer using multimodal imaging and multiview dynamic graph autoencoder feature selection
ISSN: 0094-2405, 2473-4209, 2473-4209Veröffentlicht: United States 01.10.2025Veröffentlicht in Medical physics (Lancaster) (01.10.2025)“… Background External beam radiation therapy is a common treatment for head and neck (H&N) cancers. Radiomic features derived from biomedical images have shown …”
Volltext
Journal Article -
9
SELECTOR: Heterogeneous graph network with convolutional masked autoencoder for multimodal robust prediction of cancer survival
ISSN: 0010-4825, 1879-0534, 1879-0534Veröffentlicht: United States Elsevier Ltd 01.04.2024Veröffentlicht in Computers in biology and medicine (01.04.2024)“… This paper introduces SELECTOR, a heterogeneous graph-aware network based on convolutional mask encoders for robust multimodal prediction of cancer patient survival …”
Volltext
Journal Article -
10
Relation Learning on Social Networks with Multi-Modal Graph Edge Variational Autoencoders
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 04.11.2019Veröffentlicht in arXiv.org (04.11.2019)“… However, relations in social networks are often hard to profile, due to noisy multi-modal signals and limited user-generated ground-truth labels …”
Volltext
Paper -
11
Dual Mutual Information-Driven Multimodal Recommendation with Denoising Graph Autoencoder
ISSN: 1945-788XVeröffentlicht: IEEE 30.06.2025Veröffentlicht in Proceedings (IEEE International Conference on Multimedia and Expo) (30.06.2025)“… Such limitations ultimately harm the recommendation performance. To this end, we propose a Dual Mutual Information-Driven Multimodal Recommendation Model with Denoising Graph Autoencoder (DMIGA …”
Volltext
Tagungsbericht -
12
Spatially Aware Domain Adaptation Enables Cell Type Deconvolution from Multi-Modal Spatially Resolved Transcriptomics
ISSN: 2366-9608, 2366-9608Veröffentlicht: Germany 01.05.2025Veröffentlicht in Small methods (01.05.2025)“… SpaDA utilizes a self-expressive variational autoencoder, coupled with deep spatial distribution alignment, to learn and align spatial and graph representations from spatial multi-modal SRT data …”
Weitere Angaben
Journal Article -
13
Design of an Iterative Method for Enhanced Multimodal Time Series Analysis Using Graph Attention Networks, Variational Graph Autoencoders, and Transfer Learning
ISSN: 1112-5209Veröffentlicht: Paris Engineering and Scientific Research Groups 13.04.2024Veröffentlicht in Journal of Electrical Systems (13.04.2024)“… In the ever-evolving landscape of data analysis, the need to efficiently and accurately interpret multimodal time series data has become paramount …”
Volltext
Journal Article -
14
Single-cell RNA-seq data analysis using graph autoencoders and graph attention networks
ISSN: 1664-8021, 1664-8021Veröffentlicht: Switzerland Frontiers Media S.A 09.12.2022Veröffentlicht in Frontiers in genetics (09.12.2022)“… In this study, we developed scGAEGAT, a multi-modal model with graph autoencoders and graph attention networks for scRNA-seq analysis based on graph neural networks …”
Volltext
Journal Article -
15
Fusion Learning of Multimodal Neuroimaging with Weighted Graph AutoEncoder
Veröffentlicht: IEEE 06.12.2022Veröffentlicht in 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (06.12.2022)“… Fusion of multimodal neuroimaging data is expected to provide more comprehensive characterization of brain diseases, given that the different modalities contain more complementary information …”
Volltext
Tagungsbericht -
16
Deep graph embedding learning based on multi-variational graph autoencoders for POI recommendation
ISSN: 1384-5810, 1573-756XVeröffentlicht: New York Springer Nature B.V 01.07.2025Veröffentlicht in Data mining and knowledge discovery (01.07.2025)“… To address this challenge, we propose a new unified heterogeneous graph embedding framework by leveraging multimodal variational graph autoencoders, called MultiVGAE …”
Volltext
Journal Article -
17
Multi-view representation model based on graph autoencoder
ISSN: 0020-0255, 1872-6291Veröffentlicht: Elsevier Inc 01.06.2023Veröffentlicht in Information sciences (01.06.2023)“… However, most existing graph representation learning ignores data's multi-modal features and takes the node features and graph structure features as one view …”
Volltext
Journal Article -
18
A graph-based semi-supervised approach to classification learning in digital geographies
ISSN: 0198-9715, 1873-7587Veröffentlicht: Oxford Elsevier Ltd 01.03.2021Veröffentlicht in Computers, environment and urban systems (01.03.2021)“… As the distinction between online and physical spaces rapidly degrades, social media have now become an integral component of how many people's everyday …”
Volltext
Journal Article -
19
Explicit semantic guided bi-incomplete multi-modal hashing with label co-occurrence and label graph constraints
ISSN: 0893-6080, 1879-2782, 1879-2782Veröffentlicht: United States Elsevier Ltd 01.03.2026Veröffentlicht in Neural networks (01.03.2026)“… •We propose LaDiff-BIMH, a novel bi-incomplete multi-modal hashing framework that simultaneously handles missing features and labels within a unified architecture …”
Volltext
Journal Article -
20
Multi-modal Spatial Clustering for Spatial Transcriptomics Utilizing High-resolution Histology Images
ISSN: 2156-1133Veröffentlicht: IEEE 03.12.2024Veröffentlicht in Proceedings (IEEE International Conference on Bioinformatics and Biomedicine) (03.12.2024)“… Understanding the intricate cellular environment within biological tissues is crucial for uncovering insights into complex biological functions. While …”
Volltext
Tagungsbericht