Suchergebnisse - Maximum entropy clustering algorithm*

  1. 1

    Density-sensitive fuzzy kernel maximum entropy clustering algorithm von Tao, Xinmin, Wang, Ruotong, Chang, Rui, Li, Chenxi

    ISSN: 0950-7051, 1872-7409
    Veröffentlicht: Amsterdam Elsevier B.V 15.02.2019
    Veröffentlicht in Knowledge-based systems (15.02.2019)
    “… Maximum entropy clustering algorithm (ME) has lately received great attention for its high performance in large-scale data clustering and simplicity in implementation …”
    Volltext
    Journal Article
  2. 2

    Construction of Soft Computing Anomaly Detection Model Based on Independence Criteria and Maximum Entropy Clustering Algorithm von Liang, Chunhua

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: IEEE 2024
    Veröffentlicht in IEEE access (2024)
    “… In order to improve the accuracy and reliability of anomaly detection, this paper proposes an improved soft computing anomaly detection model based on independence criterion and maximum entropy clustering algorithm …”
    Volltext
    Journal Article
  3. 3

    Anomaly Detection Using Maximum Entropy Fuzzy Clustering Algorithm Enhanced with Soft Computing Techniques von Liang, Chunhua

    ISSN: 0350-5596, 1854-3871
    Veröffentlicht: Ljubljana Slovenian Society Informatika / Slovensko drustvo Informatika 01.11.2024
    Veröffentlicht in Informatica (Ljubljana) (01.11.2024)
    “… In view of the maximum entropy fuzzy clustering algorithm, an anomaly detection method combining soft computing is proposed …”
    Volltext
    Journal Article
  4. 4
  5. 5

    Fuzzy Linear Discriminant Analysis-guided maximum entropy fuzzy clustering algorithm von Zhi, Xiao-bin, Fan, Jiu-lun, Zhao, Feng

    ISSN: 0031-3203, 1873-5142
    Veröffentlicht: Kidlington Elsevier Ltd 01.06.2013
    Veröffentlicht in Pattern recognition (01.06.2013)
    “… ) is a classical unsupervised learning algorithm for clustering. Based on the analysis of the relationship between LDA and HCM, Linear Discriminant Analysis-guided adaptive subspace hard c-means clustering algorithm (LDA–HCM) had been proposed. LDA …”
    Volltext
    Journal Article
  6. 6

    Maximum Entropy Clustering Algorithm Based on Partition Fusion and View-weighting von ZHANG Dandan,DENG Zhaohong,JIANG Yizhang,WANG Shitong

    ISSN: 1000-3428
    Veröffentlicht: Editorial Office of Computer Engineering 01.04.2016
    Veröffentlicht in Ji suan ji gong cheng (01.04.2016)
    “… Aiming at the limitation to effectively realize the view fusion in the multi-view clustering task for Maximum Entropy Clustering(MEC …”
    Volltext
    Journal Article
  7. 7

    A clustering algorithm based on maximum entropy principle von Zhao, Yang, Liu, Fangai

    ISSN: 1742-6588, 1742-6596
    Veröffentlicht: Bristol IOP Publishing 01.08.2017
    Veröffentlicht in Journal of physics. Conference series (01.08.2017)
    “… Aiming at the shortcomings of clustering performance of many traditional text clustering methods, a clustering algorithm based on maximum entropy principle is proposed …”
    Volltext
    Journal Article
  8. 8

    Robust maximum entropy clustering algorithm with its labeling for outliers von Shitong, Wang, Chung, Korris F.L., Zhaohong, Deng, Dewen, Hu, Xisheng, Wu

    ISSN: 1432-7643, 1433-7479
    Veröffentlicht: Heidelberg Springer Nature B.V 01.05.2006
    Veröffentlicht in Soft computing (Berlin, Germany) (01.05.2006)
    “… In this paper, a novel robust maximum entropy clustering algorithm RMEC, as the improved version of the maximum entropy algorithm MEC [2–4 …”
    Volltext
    Journal Article
  9. 9

    Chaos control of ferroresonance system based on RBF-maximum entropy clustering algorithm von Fan, Liu, Cai-xin, Sun, Wen-xia, Si-ma, Rui-jin, Liao, Fei, Guo

    ISSN: 0375-9601, 1873-2429
    Veröffentlicht: Elsevier B.V 11.09.2006
    Veröffentlicht in Physics letters. A (11.09.2006)
    “… With regards to the ferroresonance overvoltage of neutral grounded power system, a maximum-entropy learning algorithm based on radial basis function neural networks is used to control the chaotic system …”
    Volltext
    Journal Article
  10. 10

    A proof of the convergence theorem of maximum-entropy clustering algorithm von Ren, ShiJun, Wang, YaDong

    ISSN: 1674-733X, 1869-1919
    Veröffentlicht: Heidelberg SP Science China Press 01.06.2010
    Veröffentlicht in Science China. Information sciences (01.06.2010)
    “… This means that the example cannot negate the convergence theorem of maximum entropy clustering algorithm …”
    Volltext
    Journal Article
  11. 11

    Entropy-Based Fuzzy C-Ordered-Means Clustering Algorithm von Moradi, Mona, Hamidzadeh, Javad

    ISSN: 0288-3635, 1882-7055
    Veröffentlicht: Tokyo Springer Japan 01.09.2023
    Veröffentlicht in New generation computing (01.09.2023)
    “… Fuzzy C -Means is a well-known fuzzy clustering technique. Although FCM can cover the uncertainty problem by forming overlapping clusters, it involves issues …”
    Volltext
    Journal Article
  12. 12

    Modified Grey Wolf Optimizer based Maximum Entropy Clustering Algorithm von Cai, Jia, Xu, Guanglong, Ye, Wenwen

    ISSN: 2161-4407
    Veröffentlicht: IEEE 01.07.2020
    “… In this paper, we propose a new maximum entropy clustering algorithm by modified grey wolf optimizer (GWO …”
    Volltext
    Tagungsbericht
  13. 13

    Early-Warning Model of Financial Crisis: An Empirical Study Based on partnering of Biotech firms in china von Li, Junjing

    ISSN: 1462-8732, 1478-565X
    Veröffentlicht: London thinkBiotech LLC 10.08.2022
    Veröffentlicht in Journal of commercial biotechnology (10.08.2022)
    “… The financial crisis is classified based on a maximum entropy clustering algorithm to overcome the overfitting problem …”
    Volltext
    Journal Article
  14. 14

    MECA: maximum entropy clustering algorithm von Karayiannis, N.B.

    ISBN: 078031896X, 9780780318960
    Veröffentlicht: IEEE 1994
    “… This paper presents a new approach to fuzzy clustering, which provides the basis for the development of the maximum entropy clustering algorithm (MECA …”
    Volltext
    Tagungsbericht
  15. 15

    Counterexamples to convergence theorem of maximum-entropy clustering algorithm von YU, Jian

    ISSN: 1009-2757, 1674-733X, 1869-1919
    Veröffentlicht: Heidelberg Springer Nature B.V 01.10.2003
    Veröffentlicht in Science China. Information sciences (01.10.2003)
    “… In this paper, we surveyed the development of maximum-entropy clustering algorithm, pointed out that the maximum-entropy clustering algorithm is not new in essence, and constructed two examples …”
    Volltext
    Journal Article
  16. 16

    An improved algorithm for support vector clustering based on maximum entropy principle and kernel matrix von Guo, Chonghui, Li, Fang

    ISSN: 0957-4174, 1873-6793
    Veröffentlicht: Elsevier Ltd 01.07.2011
    Veröffentlicht in Expert systems with applications (01.07.2011)
    “… ► We present an improved SVC algorithm support vector clustering based on maximum entropy principle and kernel matrix …”
    Volltext
    Journal Article
  17. 17

    Maximum-entropy clustering algorithm and its global convergence analysis von Zhang, Zhihua, Zheng, Nanning, Shi, Gang

    ISSN: 1006-9321, 1862-281X
    Veröffentlicht: Institute of Artificial Intelligence & Robotics, Xi'an Jiaotong University, Xi'an 710049, China 01.02.2001
    Veröffentlicht in Science in China Series E: Technological Sciences (01.02.2001)
    “… TP1; Constructing a batch of differentiable entropy functions touniformly approximate an objective function by means of the maximum-entropy principle, a new clustering algorithm, called maximum-entropy …”
    Volltext
    Journal Article
  18. 18

    Maximum Weighted Entropy Clustering Algorithm von Li Lao, Xiaoming Wu, Lingpeng Cheng, Xuefeng Zhu

    ISBN: 1424400651, 9781424400652
    Veröffentlicht: IEEE 2006
    “… Combining with the conception of minimum spanning tree in graph theory and with entropy in information theory, a new algorithm is proposed for clustering …”
    Volltext
    Tagungsbericht
  19. 19

    Improved Kernel-based Fuzzy Clustering Algorithm Based on Maximum Tsallis Entropy von Fang, Zheng, Zhu, Kunping

    Veröffentlicht: IEEE 29.07.2023
    “… This paper proposes an improved kernel-based fuzzy clustering algorithm based on maximum Tsallis entropy (MTE-IKFC …”
    Volltext
    Tagungsbericht
  20. 20

    Counterexamples to convergence theorem of maximum-entropy clustering algorithm

    ISSN: 1009-2757
    Veröffentlicht: School of Computer and Information Technology, Northern Jiaotong University, Beijing 100044, China%Department of Information Science, School of Mathematical Science, Peking University, Beijing 100871, China 2003
    Veröffentlicht in 中国科学F辑(英文版) (2003)
    “… O1; In this paper, we surveyed the development of maximum-entropy clustering algorithm, pointed out that the maximum-entropy clustering algorithm is not new in essence, and constructed two examples …”
    Volltext
    Journal Article