Suchergebnisse - Learning with Noisy Labels in Machine Learning
-
1
Probabilistic machine learning for noisy labels in Earth observation
ISSN: 2045-2322, 2045-2322Veröffentlicht: London Nature Publishing Group UK 14.10.2025Veröffentlicht in Scientific reports (14.10.2025)“… Label noise poses a significant challenge in Earth Observation (EO), often degrading the performance and reliability of supervised Machine Learning (ML) models …”
Volltext
Journal Article -
2
Agreeing to disagree: active learning with noisy labels without crowdsourcing
ISSN: 1868-8071, 1868-808X, 1868-808XVeröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2018Veröffentlicht in International journal of machine learning and cybernetics (01.08.2018)“… We propose a new active learning method for classification, which handles label noise without relying on multiple oracles (i.e., crowdsourcing …”
Volltext
Journal Article -
3
Towards harnessing feature embedding for robust learning with noisy labels
ISSN: 0885-6125, 1573-0565Veröffentlicht: New York Springer US 01.09.2022Veröffentlicht in Machine learning (01.09.2022)“… To exploit this effect, the model prediction-based methods have been widely adopted, which aim to exploit the outputs of DNNs in the early stage of learning to correct noisy labels …”
Volltext
Journal Article -
4
Curriculum-Based Federated Learning for Machine Fault Diagnosis With Noisy Labels
ISSN: 1551-3203, 1941-0050Veröffentlicht: Piscataway IEEE 01.12.2024Veröffentlicht in IEEE transactions on industrial informatics (01.12.2024)“… Federated learning (FL) has emerged as an effective machine-learning paradigm for collaborative machine fault diagnosis in a privacy-preserving scheme …”
Volltext
Journal Article -
5
Probabilistic instance dependent label refinement for noisy label learning
ISSN: 0885-6125, 1573-0565Veröffentlicht: New York Springer US 01.05.2025Veröffentlicht in Machine learning (01.05.2025)“… By adjusting the combination coefficient of the noisy label, the impact of noise is reduced, which in turn makes the training process more robust …”
Volltext
Journal Article -
6
Partial Multi-Label Learning With Noisy Label Identification
ISSN: 0162-8828, 1939-3539, 2160-9292, 1939-3539Veröffentlicht: United States IEEE 01.07.2022Veröffentlicht in IEEE transactions on pattern analysis and machine intelligence (01.07.2022)“… Partial multi-label learning (PML) deals with problems where each instance is assigned with a candidate label set, which contains multiple relevant labels and some noisy labels …”
Volltext
Journal Article -
7
A confident learning-based support vector machine for robust ground classification in noisy label environments
ISSN: 0886-7798Veröffentlicht: Elsevier Ltd 01.01.2025Veröffentlicht in Tunnelling and underground space technology (01.01.2025)“… Geological labels obtained from field exploration have potential errors due to technique limitations and subjective interference, leading to noisy labels when developing ground-machine interaction …”
Volltext
Journal Article -
8
A General Model for Noisy Labels in Machine Learning
ISBN: 9798379637767Veröffentlicht: ProQuest Dissertations & Theses 01.01.2023“… Machine learning is an ever-growing and increasingly pervasive presence in everyday life …”
Volltext
Dissertation -
9
CPL: consistent prompt learning for noisy label facial expression recognition
ISSN: 1868-8071, 1868-808XVeröffentlicht: 24.09.2025Veröffentlicht in International journal of machine learning and cybernetics (24.09.2025)Volltext
Journal Article -
10
Adaptive Hierarchical Similarity Metric Learning with Noisy Labels
ISSN: 1057-7149, 1941-0042, 1941-0042Veröffentlicht: United States IEEE 01.01.2023Veröffentlicht in IEEE transactions on image processing (01.01.2023)“… However, most existing deep metric learning methods with binary similarity are sensitive to noisy labels, which are widely present in real-world data …”
Volltext
Journal Article -
11
No regret sample selection with noisy labels
ISSN: 0885-6125, 1573-0565Veröffentlicht: New York Springer US 01.03.2024Veröffentlicht in Machine learning (01.03.2024)“… Deep neural networks (DNNs) suffer from noisy-labeled data because of the risk of overfitting …”
Volltext
Journal Article -
12
A Time-Consistency Curriculum for Learning From Instance-Dependent Noisy Labels
ISSN: 0162-8828, 1939-3539, 2160-9292, 1939-3539Veröffentlicht: United States IEEE 01.07.2024Veröffentlicht in IEEE transactions on pattern analysis and machine intelligence (01.07.2024)“… Many machine learning algorithms are known to be fragile on simple instance-independent noisy labels …”
Volltext
Journal Article -
13
Learning from Weak and Noisy Labels for Semantic Segmentation
ISSN: 0162-8828, 2160-9292, 1939-3539Veröffentlicht: United States IEEE 01.03.2017Veröffentlicht in IEEE transactions on pattern analysis and machine intelligence (01.03.2017)“… , these `free' tags/labels are often noisy and few existing works address the problem of learning with both weak and noisy labels …”
Volltext
Journal Article -
14
A class sensitivity feature guided T-type generative model for noisy label classification
ISSN: 0885-6125, 1573-0565Veröffentlicht: New York Springer US 01.10.2024Veröffentlicht in Machine learning (01.10.2024)“… Large-scale datasets inevitably contain noisy labels, which induces weak performance of deep neural networks (DNNs …”
Volltext
Journal Article -
15
Searching to Exploit Memorization Effect in Deep Learning With Noisy Labels
ISSN: 0162-8828, 1939-3539, 2160-9292, 1939-3539Veröffentlicht: United States IEEE 01.12.2024Veröffentlicht in IEEE transactions on pattern analysis and machine intelligence (01.12.2024)“… Sample selection approaches are popular in robust learning from noisy labels. However, how to control the selection process properly so that deep networks can benefit from the memorization effect is a hard problem …”
Volltext
Journal Article -
16
Knockoffs-SPR: Clean Sample Selection in Learning With Noisy Labels
ISSN: 0162-8828, 1939-3539, 2160-9292, 1939-3539Veröffentlicht: United States IEEE 01.05.2024Veröffentlicht in IEEE transactions on pattern analysis and machine intelligence (01.05.2024)“… In this article, we propose a novel theoretically guaranteed clean sample selection framework for learning with noisy labels …”
Volltext
Journal Article -
17
Regularly Truncated M-Estimators for Learning With Noisy Labels
ISSN: 0162-8828, 1939-3539, 2160-9292, 1939-3539Veröffentlicht: United States IEEE 01.05.2024Veröffentlicht in IEEE transactions on pattern analysis and machine intelligence (01.05.2024)“… The sample selection approach is very popular in learning with noisy labels. As deep networks "learn pattern first" , prior methods built on sample selection share a similar training procedure …”
Volltext
Journal Article -
18
The fuzzy support vector data description based on tightness for noisy label detection
ISSN: 2199-4536, 2198-6053Veröffentlicht: Cham Springer International Publishing 01.06.2024Veröffentlicht in Complex & intelligent systems (01.06.2024)“… Machine learning (ML) is an approach driven by data, and as research in machine learning progresses, the issue of noisy labels has garnered widespread attention …”
Volltext
Journal Article -
19
Adaptive Learning for Dynamic Features and Noisy Labels
ISSN: 0162-8828, 1939-3539, 2160-9292, 1939-3539Veröffentlicht: United States IEEE 01.02.2025Veröffentlicht in IEEE transactions on pattern analysis and machine intelligence (01.02.2025)“… Learning from such a problem where the dynamic features are coupled with noisy labels is crucial but rarely studied, particularly when the noisy samples in new feature space are limited …”
Volltext
Journal Article -
20
IRNet: Iterative Refinement Network for Noisy Partial Label Learning
ISSN: 0162-8828, 1939-3539, 2160-9292, 1939-3539Veröffentlicht: United States IEEE 13.10.2025Veröffentlicht in IEEE transactions on pattern analysis and machine intelligence (13.10.2025)“… Partial label learning (PLL) is a typical weakly supervised learning, where each sample is associated with a set of candidate labels …”
Volltext
Journal Article

