Suchergebnisse - Learning with Noisy Labels in Machine Learning

  1. 1

    Probabilistic machine learning for noisy labels in Earth observation von Kondylatos, Spyros, Bountos, Nikolaos Ioannis, Prapas, Ioannis, Zavras, Angelos, Camps-Valls, Gustau, Papoutsis, Ioannis

    ISSN: 2045-2322, 2045-2322
    Veröffentlicht: London Nature Publishing Group UK 14.10.2025
    Veröffentlicht in Scientific reports (14.10.2025)
    “… Label noise poses a significant challenge in Earth Observation (EO), often degrading the performance and reliability of supervised Machine Learning (ML) models …”
    Volltext
    Journal Article
  2. 2

    Agreeing to disagree: active learning with noisy labels without crowdsourcing von Bouguelia, Mohamed-Rafik, Nowaczyk, Slawomir, Santosh, K. C., Verikas, Antanas

    ISSN: 1868-8071, 1868-808X, 1868-808X
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2018
    “… We propose a new active learning method for classification, which handles label noise without relying on multiple oracles (i.e., crowdsourcing …”
    Volltext
    Journal Article
  3. 3

    Towards harnessing feature embedding for robust learning with noisy labels von Zhang, Chuang, Shen, Li, Yang, Jian, Gong, Chen

    ISSN: 0885-6125, 1573-0565
    Veröffentlicht: New York Springer US 01.09.2022
    Veröffentlicht in Machine learning (01.09.2022)
    “… To exploit this effect, the model prediction-based methods have been widely adopted, which aim to exploit the outputs of DNNs in the early stage of learning to correct noisy labels …”
    Volltext
    Journal Article
  4. 4

    Curriculum-Based Federated Learning for Machine Fault Diagnosis With Noisy Labels von Sun, Wenjun, Yan, Ruqiang, Jin, Ruibing, Zhao, Rui, Chen, Zhenghua

    ISSN: 1551-3203, 1941-0050
    Veröffentlicht: Piscataway IEEE 01.12.2024
    Veröffentlicht in IEEE transactions on industrial informatics (01.12.2024)
    “… Federated learning (FL) has emerged as an effective machine-learning paradigm for collaborative machine fault diagnosis in a privacy-preserving scheme …”
    Volltext
    Journal Article
  5. 5

    Probabilistic instance dependent label refinement for noisy label learning von He, Hao-Yuan, Liu, Yu, Liu, Ren-Biao, Xie, Zheng, Li, Ming

    ISSN: 0885-6125, 1573-0565
    Veröffentlicht: New York Springer US 01.05.2025
    Veröffentlicht in Machine learning (01.05.2025)
    “… By adjusting the combination coefficient of the noisy label, the impact of noise is reduced, which in turn makes the training process more robust …”
    Volltext
    Journal Article
  6. 6

    Partial Multi-Label Learning With Noisy Label Identification von Xie, Ming-Kun, Huang, Sheng-Jun

    ISSN: 0162-8828, 1939-3539, 2160-9292, 1939-3539
    Veröffentlicht: United States IEEE 01.07.2022
    “… Partial multi-label learning (PML) deals with problems where each instance is assigned with a candidate label set, which contains multiple relevant labels and some noisy labels …”
    Volltext
    Journal Article
  7. 7

    A confident learning-based support vector machine for robust ground classification in noisy label environments von Zhang, Xin-Yue, Zhang, Xiao-Ping, Yu, Hong-Gan, Liu, Quan-Sheng

    ISSN: 0886-7798
    Veröffentlicht: Elsevier Ltd 01.01.2025
    Veröffentlicht in Tunnelling and underground space technology (01.01.2025)
    “… Geological labels obtained from field exploration have potential errors due to technique limitations and subjective interference, leading to noisy labels when developing ground-machine interaction …”
    Volltext
    Journal Article
  8. 8

    A General Model for Noisy Labels in Machine Learning von Dawson, Glenn

    ISBN: 9798379637767
    Veröffentlicht: ProQuest Dissertations & Theses 01.01.2023
    “… Machine learning is an ever-growing and increasingly pervasive presence in everyday life …”
    Volltext
    Dissertation
  9. 9
  10. 10

    Adaptive Hierarchical Similarity Metric Learning with Noisy Labels von Yan, Jiexi, Luo, Lei, Deng, Cheng, Huang, Heng

    ISSN: 1057-7149, 1941-0042, 1941-0042
    Veröffentlicht: United States IEEE 01.01.2023
    Veröffentlicht in IEEE transactions on image processing (01.01.2023)
    “… However, most existing deep metric learning methods with binary similarity are sensitive to noisy labels, which are widely present in real-world data …”
    Volltext
    Journal Article
  11. 11

    No regret sample selection with noisy labels von Song, Heon, Mitsuo, Nariaki, Uchida, Seiichi, Suehiro, Daiki

    ISSN: 0885-6125, 1573-0565
    Veröffentlicht: New York Springer US 01.03.2024
    Veröffentlicht in Machine learning (01.03.2024)
    “… Deep neural networks (DNNs) suffer from noisy-labeled data because of the risk of overfitting …”
    Volltext
    Journal Article
  12. 12

    A Time-Consistency Curriculum for Learning From Instance-Dependent Noisy Labels von Wu, Songhua, Zhou, Tianyi, Du, Yuxuan, Yu, Jun, Han, Bo, Liu, Tongliang

    ISSN: 0162-8828, 1939-3539, 2160-9292, 1939-3539
    Veröffentlicht: United States IEEE 01.07.2024
    “… Many machine learning algorithms are known to be fragile on simple instance-independent noisy labels …”
    Volltext
    Journal Article
  13. 13

    Learning from Weak and Noisy Labels for Semantic Segmentation von Lu, Zhiwu, Fu, Zhenyong, Xiang, Tao, Han, Peng, Wang, Liwei, Gao, Xin

    ISSN: 0162-8828, 2160-9292, 1939-3539
    Veröffentlicht: United States IEEE 01.03.2017
    “… , these `free' tags/labels are often noisy and few existing works address the problem of learning with both weak and noisy labels …”
    Volltext
    Journal Article
  14. 14

    A class sensitivity feature guided T-type generative model for noisy label classification von Bai, Yidi, Cui, Hengjian

    ISSN: 0885-6125, 1573-0565
    Veröffentlicht: New York Springer US 01.10.2024
    Veröffentlicht in Machine learning (01.10.2024)
    “… Large-scale datasets inevitably contain noisy labels, which induces weak performance of deep neural networks (DNNs …”
    Volltext
    Journal Article
  15. 15

    Searching to Exploit Memorization Effect in Deep Learning With Noisy Labels von Yang, Hansi, Yao, Quanming, Han, Bo, Kwok, James T.

    ISSN: 0162-8828, 1939-3539, 2160-9292, 1939-3539
    Veröffentlicht: United States IEEE 01.12.2024
    “… Sample selection approaches are popular in robust learning from noisy labels. However, how to control the selection process properly so that deep networks can benefit from the memorization effect is a hard problem …”
    Volltext
    Journal Article
  16. 16

    Knockoffs-SPR: Clean Sample Selection in Learning With Noisy Labels von Wang, Yikai, Fu, Yanwei, Sun, Xinwei

    ISSN: 0162-8828, 1939-3539, 2160-9292, 1939-3539
    Veröffentlicht: United States IEEE 01.05.2024
    “… In this article, we propose a novel theoretically guaranteed clean sample selection framework for learning with noisy labels …”
    Volltext
    Journal Article
  17. 17

    Regularly Truncated M-Estimators for Learning With Noisy Labels von Xia, Xiaobo, Lu, Pengqian, Gong, Chen, Han, Bo, Yu, Jun, Yu, Jun, Liu, Tongliang

    ISSN: 0162-8828, 1939-3539, 2160-9292, 1939-3539
    Veröffentlicht: United States IEEE 01.05.2024
    “… The sample selection approach is very popular in learning with noisy labels. As deep networks "learn pattern first" , prior methods built on sample selection share a similar training procedure …”
    Volltext
    Journal Article
  18. 18

    The fuzzy support vector data description based on tightness for noisy label detection von Wu, Xiaoying, Liu, Sanyang, Bai, Yiguang

    ISSN: 2199-4536, 2198-6053
    Veröffentlicht: Cham Springer International Publishing 01.06.2024
    Veröffentlicht in Complex & intelligent systems (01.06.2024)
    “… Machine learning (ML) is an approach driven by data, and as research in machine learning progresses, the issue of noisy labels has garnered widespread attention …”
    Volltext
    Journal Article
  19. 19

    Adaptive Learning for Dynamic Features and Noisy Labels von Gu, Shilin, Xu, Chao, Hu, Dewen, Hou, Chenping

    ISSN: 0162-8828, 1939-3539, 2160-9292, 1939-3539
    Veröffentlicht: United States IEEE 01.02.2025
    “… Learning from such a problem where the dynamic features are coupled with noisy labels is crucial but rarely studied, particularly when the noisy samples in new feature space are limited …”
    Volltext
    Journal Article
  20. 20

    IRNet: Iterative Refinement Network for Noisy Partial Label Learning von Lian, Zheng, Xu, Mingyu, Chen, Lan, Sun, Licai, Liu, Bin, Feng, Lei, Tao, Jianhua

    ISSN: 0162-8828, 1939-3539, 2160-9292, 1939-3539
    Veröffentlicht: United States IEEE 13.10.2025
    “… Partial label learning (PLL) is a typical weakly supervised learning, where each sample is associated with a set of candidate labels …”
    Volltext
    Journal Article