Výsledky vyhledávání - LSTM and SVM NLP Machine learning Transformer SVM offensive language

  • Zobrazuji výsledky 1 - 4 z 4
Upřesnit hledání
  1. 1

    Arabic Offensive Language Classification: Leveraging Transformer, LSTM, and SVM Autor Rasheed, Areeg Fahad, Zarkoosh, M., Abbas, Safa F., Sabah Al-Azzawi, Sana

    ISBN: 9798350303926, 9798350303919
    Vydáno: IEEE 14.12.2023
    “… Three distinct strategies were used: support vector machine (SVM), long short-term memory (LSTM…”
    Získat plný text
    Konferenční příspěvek
  2. 2

    RU-OLD: A Comprehensive Analysis of Offensive Language Detection in Roman Urdu Using Hybrid Machine Learning, Deep Learning, and Transformer Models Autor Zain, Muhammad, Hussain, Nisar, Qasim, Amna, Mehak, Gull, Ahmad, Fiaz, Sidorov, Grigori, Gelbukh, Alexander

    ISSN: 1999-4893, 1999-4893
    Vydáno: Basel MDPI AG 01.07.2025
    Vydáno v Algorithms (01.07.2025)
    “… This work investigates machine learning (ML), deep learning (DL), and transformer-based methods for detecting offensive language in Roman Urdu comments collected from YouTube news channels…”
    Získat plný text
    Journal Article
  3. 3

    NLP-CUET@DravidianLangTech-EACL2021: Offensive Language Detection from Multilingual Code-Mixed Text using Transformers Autor Sharif, Omar, Hossain, Eftekhar, Hoque, Mohammed Moshiul

    ISSN: 2331-8422
    Vydáno: Ithaca Cornell University Library, arXiv.org 28.02.2021
    Vydáno v arXiv.org (28.02.2021)
    “… To accomplish the tasks, we employed two machine learning techniques (LR, SVM), three deep learning (LSTM, LSTM+Attention…”
    Získat plný text
    Paper
  4. 4

    Detection of Inappropriate Language on Social Media Platforms Using Machine Learning Algorithms Autor Mishra, Shri Om, Ahmer, Mohd, Mittal, Nupur, Maurya, Akhilesh Kumar, Kumar Singh, Amit, Kumar, Ashawani

    ISBN: 9798350364682
    Vydáno: IEEE 15.11.2024
    “… This paper explores the effectiveness of different machine learning techniques in detecting offensive language on social media, using real-world datasets…”
    Získat plný text
    Konferenční příspěvek