Výsledky vyhledávání - IEEE/CVF Conference on Computer Vision AND Pattern Recognition

Upřesnit hledání
  1. 1
  2. 2

    Collecting Cross-Modal Presence-Absence Evidence for Weakly-Supervised Audio- Visual Event Perception Autor Gao, Junyu, Chen, Mengyuan, Xu, Changsheng

    ISSN: 1063-6919
    Vydáno: IEEE 01.06.2023
    “…With only video-level event labels, this paper targets at the task of weakly-supervised audio-visual event perception (WS-AVEP), which aims to temporally…”
    Získat plný text
    Konferenční příspěvek
  3. 3

    Masked-attention Mask Transformer for Universal Image Segmentation Autor Cheng, Bowen, Misra, Ishan, Schwing, Alexander G., Kirillov, Alexander, Girdhar, Rohit

    ISSN: 1063-6919
    Vydáno: IEEE 01.06.2022
    “… Each choice of semantics defines a task. While only the semantics of each task differ, current research focuses on designing spe-cialized architectures for each task…”
    Získat plný text
    Konferenční příspěvek
  4. 4

    Bottleneck Transformers for Visual Recognition Autor Srinivas, Aravind, Lin, Tsung-Yi, Parmar, Niki, Shlens, Jonathon, Abbeel, Pieter, Vaswani, Ashish

    ISSN: 1063-6919
    Vydáno: IEEE 01.06.2021
    “…We present BoTNet, a conceptually simple yet powerful backbone architecture that incorporates self-attention for multiple computer vision tasks including image classification, object detection and instance segmentation…”
    Získat plný text
    Konferenční příspěvek
  5. 5

    GLIGEN: Open-Set Grounded Text-to-Image Generation Autor Li, Yuheng, Liu, Haotian, Wu, Qingyang, Mu, Fangzhou, Yang, Jianwei, Gao, Jianfeng, Li, Chunyuan, Lee, Yong Jae

    ISSN: 1063-6919
    Vydáno: IEEE 01.06.2023
    “… enabling them to also be conditioned on grounding inputs. To preserve the vast concept knowledge of the pre-trained model, we freeze all of its weights and inject the grounding information into new trainable layers via a gated mechanism…”
    Získat plný text
    Konferenční příspěvek
  6. 6

    Lips Don't Lie: A Generalisable and Robust Approach to Face Forgery Detection Autor Haliassos, Alexandros, Vougioukas, Konstantinos, Petridis, Stavros, Pantic, Maja

    ISSN: 1063-6919
    Vydáno: IEEE 01.06.2021
    “… Some recent works show improvements in generalisation but rely on cues that are easily corrupted by common post-processing operations such as compression…”
    Získat plný text
    Konferenční příspěvek
  7. 7

    Dense Contrastive Learning for Self-Supervised Visual Pre-Training Autor Wang, Xinlong, Zhang, Rufeng, Shen, Chunhua, Kong, Tao, Li, Lei

    ISSN: 1063-6919
    Vydáno: IEEE 01.06.2021
    “…To date, most existing self-supervised learning methods are designed and optimized for image classification. These pre-trained models can be sub-optimal for…”
    Získat plný text
    Konferenční příspěvek
  8. 8

    Deformable ConvNets V2: More Deformable, Better Results Autor Zhu, Xizhou, Hu, Han, Lin, Stephen, Dai, Jifeng

    ISSN: 1063-6919
    Vydáno: IEEE 01.06.2019
    “… To address this problem, we present a reformulation of Deformable ConvNets that improves its ability to focus on pertinent image regions, through increased modeling power and stronger training…”
    Získat plný text
    Konferenční příspěvek
  9. 9

    Evading Defenses to Transferable Adversarial Examples by Translation-Invariant Attacks Autor Dong, Yinpeng, Pang, Tianyu, Su, Hang, Zhu, Jun

    ISSN: 1063-6919
    Vydáno: IEEE 01.06.2019
    “…Deep neural networks are vulnerable to adversarial examples, which can mislead classifiers by adding imperceptible perturbations. An intriguing property of…”
    Získat plný text
    Konferenční příspěvek
  10. 10

    Google Landmarks Dataset v2 - A Large-Scale Benchmark for Instance-Level Recognition and Retrieval Autor Weyand, Tobias, Araujo, Andre, Cao, Bingyi, Sim, Jack

    ISSN: 1063-6919
    Vydáno: IEEE 01.06.2020
    “…While image retrieval and instance recognition techniques are progressing rapidly, there is a need for challenging datasets to accurately measure their performance -- while posing novel challenges…”
    Získat plný text
    Konferenční příspěvek
  11. 11

    Deformable Siamese Attention Networks for Visual Object Tracking Autor Yu, Yuechen, Xiong, Yilei, Huang, Weilin, Scott, Matthew R.

    ISSN: 1063-6919
    Vydáno: IEEE 01.06.2020
    “…Siamese-based trackers have achieved excellent performance on visual object tracking…”
    Získat plný text
    Konferenční příspěvek
  12. 12

    MobileOne: An Improved One millisecond Mobile Backbone Autor Vasu, Pavan Kumar Anasosalu, Gabriel, James, Zhu, Jeff, Tuzel, Oncel, Ranjan, Anurag

    ISSN: 1063-6919
    Vydáno: IEEE 01.06.2023
    “… However, these metrics may not correlate well with latency of the network when deployed on a mobile device…”
    Získat plný text
    Konferenční příspěvek
  13. 13

    Multi-class Token Transformer for Weakly Supervised Semantic Segmentation Autor Xu, Lian, Ouyang, Wanli, Bennamoun, Mohammed, Boussaid, Farid, Xu, Dan

    ISSN: 1063-6919
    Vydáno: IEEE 01.06.2022
    “…). Inspired by the fact that the attended regions of the one-class token in the standard vision transformer can be leveraged to form a class-agnostic localization map, we investigate if the transformer…”
    Získat plný text
    Konferenční příspěvek
  14. 14

    TopFormer: Token Pyramid Transformer for Mobile Semantic Segmentation Autor Zhang, Wenqiang, Huang, Zilong, Luo, Guozhong, Chen, Tao, Wang, Xinggang, Liu, Wenyu, Yu, Gang, Shen, Chunhua

    ISSN: 1063-6919
    Vydáno: IEEE 01.06.2022
    “…Although vision transformers (ViTs) have achieved great success in computer vision, the heavy computational cost hampers their applications to dense prediction tasks such as semantic segmentation on mobile devices…”
    Získat plný text
    Konferenční příspěvek
  15. 15

    Causality Inspired Representation Learning for Domain Generalization Autor Lv, Fangrui, Liang, Jian, Li, Shuang, Zang, Bin, Liu, Chi Harold, Wang, Ziteng, Liu, Di

    ISSN: 1063-6919
    Vydáno: IEEE 01.06.2022
    “…Domain generalization (DG) is essentially an out-of-distribution problem, aiming to generalize the knowledge learned from multiple source domains to an unseen…”
    Získat plný text
    Konferenční příspěvek
  16. 16

    Deep Snake for Real-Time Instance Segmentation Autor Peng, Sida, Jiang, Wen, Pi, Huaijin, Li, Xiuli, Bao, Hujun, Zhou, Xiaowei

    ISSN: 1063-6919
    Vydáno: IEEE 01.06.2020
    “… For structured feature learning on the contour, we propose to use circular convolution in deep snake, which better exploits the cycle-graph structure of a contour compared against generic graph convolution…”
    Získat plný text
    Konferenční příspěvek
  17. 17

    Token Contrast for Weakly-Supervised Semantic Segmentation Autor Ru, Lixiang, Zheng, Heliang, Zhan, Yibing, Du, Bo

    ISSN: 1063-6919
    Vydáno: IEEE 01.06.2023
    “… Though the recent Vision Transformer (ViT) can remedy this flaw, we observe it also brings the over-smoothing issue, i.e…”
    Získat plný text
    Konferenční příspěvek
  18. 18

    Finding Task-Relevant Features for Few-Shot Learning by Category Traversal Autor Li, Hongyang, Eigen, David, Dodge, Samuel, Zeiler, Matthew, Wang, Xiaogang

    ISSN: 1063-6919
    Vydáno: IEEE 01.06.2019
    “…Few-shot learning is an important area of research. Conceptually, humans are readily able to understand new concepts given just a few examples, while in more…”
    Získat plný text
    Konferenční příspěvek
  19. 19

    Progressively Generating Better Initial Guesses Towards Next Stages for High-Quality Human Motion Prediction Autor Ma, Tiezheng, Nie, Yongwei, Long, Chengjiang, Zhang, Qing, Li, Guiqing

    ISSN: 1063-6919
    Vydáno: IEEE 01.06.2022
    “… Our method is based on the observation that a good "initial guess" of the future poses is very helpful in improving the forecasting accuracy…”
    Získat plný text
    Konferenční příspěvek
  20. 20

    Wavelet Integrated CNNs for Noise-Robust Image Classification Autor Li, Qiufu, Shen, Linlin, Guo, Sheng, Lai, Zhihui

    ISSN: 1063-6919
    Vydáno: IEEE 01.06.2020
    “…Convolutional Neural Networks (CNNs) are generally prone to noise interruptions, i.e., small image noise can cause drastic changes in the output. To suppress…”
    Získat plný text
    Konferenční příspěvek