Výsledky vyhľadávania - Hardware Integrated circuits Reconfigurable logic and FPGAs

Upresniť hľadanie
  1. 1

    DSPlacer: DSP Placement for FPGA-based CNN Accelerator Autor Xie, Baohui, Zhu, Xinrui, Lu, Zhiyuan, Pu, Yuan, Wu, Tongkai, Zou, Xiaofeng, Yu, Bei, Chen, Tinghuan

    Vydavateľské údaje: IEEE 22.06.2025
    “…Deploying convolutional neural networks (CNNs) on hardware platforms like Field Programmable Gate Arrays (FPGAs…”
    Získať plný text
    Konferenčný príspevok..
  2. 2

    Caffeine: Towards uniformed representation and acceleration for deep convolutional neural networks Autor Chen Zhang, Zhenman Fang, Peipei Zhou, Peichen Pan, Jason Cong

    ISSN: 1558-2434
    Vydavateľské údaje: ACM 01.11.2016
    “… In this paper we design and implement Caffeine, a hardware/software co-designed library to efficiently accelerate the entire CNN on FPGAs…”
    Získať plný text
    Konferenčný príspevok..
  3. 3
  4. 4

    SGX-FPGA: Trusted Execution Environment for CPU-FPGA Heterogeneous Architecture Autor Xia, Ke, Luo, Yukui, Xu, Xiaolin, Wei, Sheng

    Vydavateľské údaje: IEEE 05.12.2021
    “… To fill the gap, we present SGX-FPGA, a trusted hardware isolation path enabling the first FPGA TEE by bridging SGX enclaves and FPGAs in the heterogeneous CPU-FPGA architecture…”
    Získať plný text
    Konferenčný príspevok..
  5. 5

    FPGA-TrustZone: Security Extension of TrustZone to FPGA for SoC-FPGA Heterogeneous Architecture Autor Wang, Shupeng, Fan, Xindong, Xu, Xiao, Wang, Shuchen, Ju, Lei, Zhou, Zimeng

    Vydavateľské údaje: IEEE 22.06.2025
    “… Experiments on real SoC-FPGA hardware development boards show that FPGA-TrustZone provides high security with low performance overhead…”
    Získať plný text
    Konferenčný príspevok..
  6. 6

    BlockGNN: Towards Efficient GNN Acceleration Using Block-Circulant Weight Matrices Autor Zhou, Zhe, Shi, Bizhao, Zhang, Zhe, Guan, Yijin, Sun, Guangyu, Luo, Guojie

    Vydavateľské údaje: IEEE 05.12.2021
    “… platforms.To tackle this challenge, we propose BlockGNN, a software-hardware co-design approach to realize efficient GNN acceleration…”
    Získať plný text
    Konferenčný príspevok..
  7. 7

    High-Performance FPGA-based Accelerator for Bayesian Neural Networks Autor Fan, Hongxiang, Ferianc, Martin, Rodrigues, Miguel, Zhou, Hongyu, Niu, Xinyu, Luk, Wayne

    Vydavateľské údaje: IEEE 05.12.2021
    “… This work proposes a novel FPGA based hardware architecture to accelerate BNNs inferred through Monte Carlo Dropout…”
    Získať plný text
    Konferenčný príspevok..
  8. 8
  9. 9

    Configurable DSP-Based CAM Architecture for Data-Intensive Applications on FPGAs Autor Chen, Yao, Yu, Feng, Wu, Di, Wong, Weng-Fai, He, Bingsheng

    Vydavateľské údaje: IEEE 22.06.2025
    “… They have been used in many domains, such as networking, databases, and graph processing. Field-programmable gate arrays (FPGAs…”
    Získať plný text
    Konferenčný príspevok..
  10. 10

    XShift: FPGA-efficient Binarized LLM with Joint Quantization and Sparsification Autor Zhou, Shuai, Tian, Huinan, Meng, Sisi, Chen, Jianli, Yu, Jun, Wang, Kun

    Vydavateľské údaje: IEEE 22.06.2025
    “… a specialized inference framework. In response, we introduce XShift, an algorithm-hardware co-design framework optimized for efficient binarized LLM inference on FPGAs…”
    Získať plný text
    Konferenčný príspevok..
  11. 11

    WSQ-AdderNet: Efficient Weight Standardization based Quantized AdderNet FPGA Accelerator Design with High-Density INT8 DSP-LUT Co-Packing Optimization Autor Zhang, Yunxiang, Sun, Biao, Jiang, Weixiong, Ha, Yajun, Hu, Miao, Zhao, Wenfeng

    ISSN: 1558-2434
    Vydavateľské údaje: ACM 29.10.2022
    “… Recent proposals on hardware-optimal neural network architectures suggest that AdderNet with a lightweight ℓ…”
    Získať plný text
    Konferenčný príspevok..
  12. 12

    DuoQ: A DSP Utilization-aware and Outlier-free Quantization for FPGA-based LLMs Acceleration Autor Yu, Zhuoquan, Ji, Huidong, Cao, Yue, Wu, Junfu, Yan, Xiaoze, Zheng, Lirong, Zou, Zhuo

    Vydavateľské údaje: IEEE 22.06.2025
    “… To address this problem, we introduce DuoQ, an FPGA-oriented algorithm-hardware co-design framework…”
    Získať plný text
    Konferenčný príspevok..
  13. 13

    April: Accuracy-Improved Floating-Point Approximation For Neural Network Accelerators Autor Chen, Yonghao, Zou, Jiaxiang, Chen, Xinyu

    Vydavateľské údaje: IEEE 22.06.2025
    “… Floatingpoint approximation, such as Mitchell's logarithm, enables floating-point multiplication using simpler integer additions, thereby improving hardware efficiency…”
    Získať plný text
    Konferenčný príspevok..
  14. 14

    An Efficient Bit-level Sparse MAC-accelerated Architecture with SW/HW Co-design on FPGA Autor Zhang, Chenming, Gong, Lei, Wang, Chao, Zhou, Xuehai

    Vydavateľské údaje: IEEE 22.06.2025
    “… The reconfigurable platform offers possibilities for identifying the bitlevel unstructured redundancy during inference with different DNN models…”
    Získať plný text
    Konferenčný príspevok..
  15. 15

    FLAG: An FPGA-Based System for Low-Latency GNN Inference Service Using Vector Quantization Autor Han, Yunki, Kim, Taehwan, Kim, Jiwan, Ha, Seohye, Kim, Lee-Sup

    Vydavateľské údaje: IEEE 22.06.2025
    “… In this paper, we propose FLAG, an FPGA-based GNN inference serving system using vector quantization…”
    Získať plný text
    Konferenčný príspevok..
  16. 16

    An Algorithm-Hardware Co-design Based on Revised Microscaling Format Quantization for Accelerating Large Language Models Autor Hao, Yingbo, Chen, Huangxu, Zou, Yi, Yang, Yanfeng

    Vydavateľské údaje: IEEE 22.06.2025
    “… However, deploying such a new format into existing hardware systems is still challenging, and the dominant solution for LLM inference at low precision is still low-bit quantization…”
    Získať plný text
    Konferenčný príspevok..
  17. 17

    Classifying Computations on Multi-Tenant FPGAs Autor Gobulukoglu, Mustafa, Drewes, Colin, Hunter, William, Kastner, Ryan, Richmond, Dustin

    Vydavateľské údaje: IEEE 05.12.2021
    “…Modern data centers leverage large FPGAs to provide low latency, high throughput, and low energy computation…”
    Získať plný text
    Konferenčný príspevok..
  18. 18

    KLiNQ: Knowledge Distillation-Assisted Lightweight Neural Network for Qubit Readout on FPGA Autor Guo, Xiaorang, Bunarjyan, Tigran, Liu, Dai, Lienhard, Benjamin, Schulz, Martin

    Vydavateľské údaje: IEEE 22.06.2025
    “… While current methods, including deep neural networks, enhance readout accuracy, they typically lack support for mid-circuit measurements essential for quantum error correction, and they usually rely…”
    Získať plný text
    Konferenčný príspevok..
  19. 19

    CoSPARSE: A Software and Hardware Reconfigurable SpMV Framework for Graph Analytics Autor Feng, Siying, Sun, Jiawen, Pal, Subhankar, He, Xin, Kaszyk, Kuba, Park, Dong-hyeon, Morton, Magnus, Mudge, Trevor, Cole, Murray, O'Boyle, Michael, Chakrabarti, Chaitali, Dreslinski, Ronald

    Vydavateľské údaje: IEEE 05.12.2021
    “… reconfiguration as a synergistic solution to accelerate SpMV-based graph analytics algorithms. Building on previously proposed general-purpose reconfigurable hardware…”
    Získať plný text
    Konferenčný príspevok..
  20. 20

    ANT: Exploiting Adaptive Numerical Data Type for Low-bit Deep Neural Network Quantization Autor Guo, Cong, Zhang, Chen, Leng, Jingwen, Liu, Zihan, Yang, Fan, Liu, Yunxin, Guo, Minyi, Zhu, Yuhao

    Vydavateľské údaje: IEEE 01.10.2022
    “… Even though this line of work brings algorithmic benefits, it also introduces significant hardware overheads due to variable-length encoding…”
    Získať plný text
    Konferenčný príspevok..