Výsledky vyhledávání - Graph convolutional autoencoder with attention

  1. 1

    Semantic meta-path enhanced global and local topology learning for lncRNA-disease association prediction Autor Xuan, Ping, Zhao, Yue, Cui, Hui, Zhan, Linyun, Jin, Qiangguo, Zhang, Tiangang, Nakaguchi, Toshiya

    ISSN: 1545-5963, 1557-9964, 2374-0043, 1557-9964
    Vydáno: United States IEEE 01.03.2023
    “… We propose a new prediction method, MGLDA, to encode and integrate the semantics of multiple meta-paths, the global topology of heterogeneous graph, and pairwise attributes of lncRNA and disease nodes…”
    Získat plný text
    Journal Article
  2. 2

    Graph Attention Convolutional Autoencoder-Based Unsupervised Nonlinear Unmixing for Hyperspectral Images Autor Jin, Danni, Yang, Bin

    ISSN: 1939-1404, 2151-1535
    Vydáno: Piscataway IEEE 01.01.2023
    “… This paper proposes a graph attention convolutional autoencoder architecture for hyperspectral unmixing…”
    Získat plný text
    Journal Article
  3. 3

    ERA-WGAT: Edge-enhanced residual autoencoder with a window-based graph attention convolutional network for low-dose CT denoising Autor Liu, Han, Liao, Peixi, Chen, Hu, Zhang, Yi

    ISSN: 2156-7085, 2156-7085
    Vydáno: United States Optica Publishing Group 01.11.2022
    Vydáno v Biomedical optics express (01.11.2022)
    “… and a window-based graph attention convolutional network that combines static and dynamic attention modules to explore non-local self-similarity…”
    Získat plný text
    Journal Article
  4. 4

    GVDTI: graph convolutional and variational autoencoders with attribute-level attention for drug–protein interaction prediction Autor Xuan, Ping, Fan, Mengsi, Cui, Hui, Zhang, Tiangang, Nakaguchi, Toshiya

    ISSN: 1467-5463, 1477-4054, 1477-4054
    Vydáno: England Oxford University Press 17.01.2022
    Vydáno v Briefings in bioinformatics (17.01.2022)
    “… First, a framework based on graph convolutional autoencoder is constructed to learn attention-enhanced topological embedding that integrates the topology structure…”
    Získat plný text
    Journal Article
  5. 5

    MSGCA: Drug-Disease Associations Prediction Based on Multi-Similarities Graph Convolutional Autoencoder Autor Wang, Ying, Gao, Ying-Lian, Wang, Juan, Li, Feng, Liu, Jin-Xing

    ISSN: 2168-2194, 2168-2208, 2168-2208
    Vydáno: United States IEEE 01.07.2023
    “… Hence, a prediction method based on multi-similarities graph convolutional autoencoder (MSGCA…”
    Získat plný text
    Journal Article
  6. 6

    Graph Convolutional Autoencoder and Fully-Connected Autoencoder with Attention Mechanism Based Method for Predicting Drug-Disease Associations Autor Xuan, Ping, Gao, Ling, Sheng, Nan, Zhang, Tiangang, Nakaguchi, Toshiya

    ISSN: 2168-2194, 2168-2208, 2168-2208
    Vydáno: United States IEEE 01.05.2021
    “…Predicting novel uses for approved drugs helps in reducing the costs of drug development and facilitates the development process. Most of previous methods…”
    Získat plný text
    Journal Article
  7. 7

    Dynamic graph convolutional autoencoder with node-attribute-wise attention for kidney and tumor segmentation from CT volumes Autor Xuan, Ping, Cui, Hui, Zhang, Hongda, Zhang, Tiangang, Wang, Linlin, Nakaguchi, Toshiya, Duh, Henry B.L.

    ISSN: 0950-7051, 1872-7409
    Vydáno: Amsterdam Elsevier B.V 25.01.2022
    Vydáno v Knowledge-based systems (25.01.2022)
    “… We propose a novel dynamic graph convolution (DGC) autoencoder with node-attribute-wise attention (NodeAttri-Attention…”
    Získat plný text
    Journal Article
  8. 8

    Graph convolutional network based on self-attention variational autoencoder and capsule contrastive learning for aspect-based sentiment analysis Autor Wang, Xinyue, Liu, Long, Chen, Zhuo, Wang, Haiyan, Yu, Bin

    ISSN: 0957-4174
    Vydáno: Elsevier Ltd 15.06.2025
    Vydáno v Expert systems with applications (15.06.2025)
    “… In response to these issues, this article puts forward a hybrid graph convolutional network (GCN…”
    Získat plný text
    Journal Article
  9. 9
  10. 10
  11. 11
  12. 12

    scGAAC: A graph attention autoencoder for clustering single-cell RNA-sequencing data Autor Zhang, Lin, Xiang, Haiping, Wang, Feng, Chen, Zepeng, Shen, Mo, Ma, Jiani, Liu, Hui, Zheng, Hongdang

    ISSN: 1046-2023, 1095-9130, 1095-9130
    Vydáno: United States Elsevier Inc 01.09.2024
    Vydáno v Methods (San Diego, Calif.) (01.09.2024)
    “…•Integrating autoencoder and graph attention autoencoder to effectively extract cell expression and structural information…”
    Získat plný text
    Journal Article
  13. 13

    A hybrid adversarial autoencoder-graph network model with dynamic fusion for robust scRNA-seq clustering Autor Tang, Binhua, Feng, Yingying, Gao, Xinyu

    ISSN: 1471-2164, 1471-2164
    Vydáno: London BioMed Central 18.08.2025
    Vydáno v BMC genomics (18.08.2025)
    “…) and a cross-attention graph convolutional network (GCN), to address the above challenges in scRNA-seq data analysis…”
    Získat plný text
    Journal Article
  14. 14

    Batch Process Monitoring with Attention-Based Two-Dimensional Stacked Graph Convolutional Autoencoder Autor Gao, Xingke, Zhang, Zheng, Gao, Furong, Zhu, Jinlin

    Vydáno: IEEE 21.08.2024
    “…In batch processes, the efficacy of statistical control is reportedly sensitive to the dynamics and nonlinearity found in the batch data, which can hamper the…”
    Získat plný text
    Konferenční příspěvek
  15. 15

    Predicting potential microbe-disease associations based on heterogeneous graph attention network and deep sparse autoencoder Autor Wang, Bo, Zhao, Wenlong, Du, Xiaoxin, Zhang, Jianfei, Zhang, Chunyu, Wang, Liping, He, Yang

    ISSN: 0952-1976
    Vydáno: Elsevier Ltd 01.05.2025
    “… We propose a computational framework called graph attention convolutional deep sparse autoencoder microbe-disease association (GCDSAEMDA…”
    Získat plný text
    Journal Article
  16. 16

    Graph-informed convolutional autoencoder to classify brain responses during sleep Autor Zakeri, Sahar, Makouei, Somayeh, Danishvar, Sebelan

    ISSN: 1662-453X, 1662-4548, 1662-453X
    Vydáno: Switzerland Frontiers Media S.A 28.04.2025
    Vydáno v Frontiers in neuroscience (28.04.2025)
    “…Automated machine-learning algorithms that analyze biomedical signals have been used to identify sleep patterns and health issues. However, their performance…”
    Získat plný text
    Journal Article
  17. 17

    A Novel Unsupervised Structural Damage Detection Method Based on TCN-GAT Autoencoder Autor Ni, Yanchun, Jin, Qiyuan, Hu, Rui

    ISSN: 1424-8220, 1424-8220
    Vydáno: Switzerland MDPI AG 03.11.2025
    Vydáno v Sensors (Basel, Switzerland) (03.11.2025)
    “… This paper proposes an autoencoder model integrating Temporal Convolutional Networks (TCN) and Graph Attention Networks (GAT…”
    Získat plný text
    Journal Article
  18. 18

    AEGCN: An Autoencoder-Constrained Graph Convolutional Network Autor Ma, Mingyuan, Na, Sen, Wang, Hongyu

    ISSN: 0925-2312, 1872-8286
    Vydáno: Elsevier B.V 07.04.2021
    Vydáno v Neurocomputing (Amsterdam) (07.04.2021)
    “…We propose a novel neural network architecture, called autoencoder-constrained graph convolutional network, to solve node classification task on graph domains…”
    Získat plný text
    Journal Article
  19. 19

    Flexible integration of spatial and expression information for precise spot embedding via ZINB-based graph-enhanced autoencoder Autor Leng, Jiacheng, Yu, Jiating, Wu, Ling-Yun, Chen, Hongyang

    ISSN: 2399-3642, 2399-3642
    Vydáno: London Nature Publishing Group UK 04.04.2025
    Vydáno v Communications biology (04.04.2025)
    “… To address these issues, we introduce Spot2vector, a computational framework that leverages a graph-enhanced autoencoder integrating zero-inflated negative binomial distribution modeling, combining…”
    Získat plný text
    Journal Article
  20. 20

    DiamondNet: A Neural-Network-Based Heterogeneous Sensor Attentive Fusion for Human Activity Recognition Autor Zhu, Yida, Luo, Haiyong, Chen, Runze, Zhao, Fang

    ISSN: 2162-237X, 2162-2388, 2162-2388
    Vydáno: United States IEEE 01.11.2024
    “… We further introduce an attention-based graph convolutional network to construct new heterogeneous…”
    Získat plný text
    Journal Article