Suchergebnisse - Graph conventional and variational autoencoder*

  1. 1

    Multi-objective drug design with a scaffold-aware variational autoencoder von Dong, Tiejun, You, Linlin, Chen, Calvin Yu-Chian

    ISSN: 2041-6520, 2041-6539
    Veröffentlicht: England Royal Society of Chemistry 23.07.2025
    Veröffentlicht in Chemical science (Cambridge) (23.07.2025)
    “… To tackle this, we have developed ScafVAE, an innovative scaffold-aware variational autoencoder designed for the in silico graph-based generation of multi-objective drug candidates …”
    Volltext
    Journal Article
  2. 2

    Entropy-enhanced batch sampling and conformal learning in VGAE for physics-informed causal discovery and fault diagnosis von Modirrousta, Mohammadhossein, Memarian, Alireza, Huang, Biao

    ISSN: 0098-1354
    Veröffentlicht: Elsevier Ltd 01.06.2025
    Veröffentlicht in Computers & chemical engineering (01.06.2025)
    “… ) in complex industrial processes. This research introduces a novel approach to causal discovery and FDD using Variational Graph Autoencoders (VGAEs …”
    Volltext
    Journal Article
  3. 3

    Heterogeneous Hypergraph Variational Autoencoder for Link Prediction von Fan, Haoyi, Zhang, Fengbin, Wei, Yuxuan, Li, Zuoyong, Zou, Changqing, Gao, Yue, Dai, Qionghai

    ISSN: 0162-8828, 1939-3539, 2160-9292, 1939-3539
    Veröffentlicht: United States IEEE 01.08.2022
    “… of nodes, which tends to lead to a sub-optimal embedding result. This paper presents a method named Heterogeneous Hypergraph Variational Autoencoder (HeteHG-VAE …”
    Volltext
    Journal Article
  4. 4

    GVDTI: graph convolutional and variational autoencoders with attribute-level attention for drug–protein interaction prediction von Xuan, Ping, Fan, Mengsi, Cui, Hui, Zhang, Tiangang, Nakaguchi, Toshiya

    ISSN: 1467-5463, 1477-4054, 1477-4054
    Veröffentlicht: England Oxford University Press 17.01.2022
    Veröffentlicht in Briefings in bioinformatics (17.01.2022)
    “… First, a framework based on graph convolutional autoencoder is constructed to learn attention-enhanced topological embedding that integrates the topology structure …”
    Volltext
    Journal Article
  5. 5

    MODAPro: Explainable Heterogeneous Networks with Variational Graph Autoencoder for Mining Disease-Specific Functional Molecules and Pathways from Omics Data von Zhao, Jinhui, He, Jiarui, Guan, Pengwei, Bao, Han, Zhao, Xinjie, Zhao, Chunxia, Qin, Wangshu, Lu, Xin, Xu, Guowang

    ISSN: 1520-6882, 1520-6882
    Veröffentlicht: United States 28.10.2025
    Veröffentlicht in Analytical chemistry (Washington) (28.10.2025)
    “… To address these critical limitations, we introduce MODAPro, a biologically informed deep learning framework that synergistically integrates variational graph autoencoders (VAE …”
    Weitere Angaben
    Journal Article
  6. 6

    Anomaly Detection Based on Graph Convolutional Network–Variational Autoencoder Model Using Time-Series Vibration and Current Data von Choi, Seung-Hwan, An, Dawn, Lee, Inho, Lee, Suwoong

    ISSN: 2227-7390, 2227-7390
    Veröffentlicht: Basel MDPI AG 01.12.2024
    Veröffentlicht in Mathematics (Basel) (01.12.2024)
    “… To address this issue, we employ a semi-supervised learning approach that relies solely on normal data to effectively detect abnormal patterns, overcoming the limitations of conventional methods …”
    Volltext
    Journal Article
  7. 7

    Graph-Variational Convolutional Autoencoder-Based Fault Detection and Diagnosis for Photovoltaic Arrays von Arifeen, Murshedul, Petrovski, Andrei, Hasan, Md Junayed, Noman, Khandaker, Navid, Wasib Ul, Haruna, Auwal

    ISSN: 2075-1702, 2075-1702
    Veröffentlicht: Basel MDPI AG 01.12.2024
    Veröffentlicht in Machines (Basel) (01.12.2024)
    “… This paper introduces a deep learning model that combines a graph convolutional network with a variational autoencoder to diagnose faults in solar arrays …”
    Volltext
    Journal Article
  8. 8
  9. 9

    Self-Organizing Maps-Assisted Variational Autoencoder for Unsupervised Network Anomaly Detection von Huang, Hailong, Yang, Jiahong, Zeng, Hang, Wang, Yaqin, Xiao, Liuming

    ISSN: 2073-8994, 2073-8994
    Veröffentlicht: Basel MDPI AG 01.04.2025
    Veröffentlicht in Symmetry (Basel) (01.04.2025)
    “… To overcome these limitations, this study proposes a self-organizing maps-assisted variational autoencoder (SOVAE) framework …”
    Volltext
    Journal Article
  10. 10

    Accelerating drug discovery targeting dihydroorotate dehydrogenase using machine learning and generative AI approaches von Krishnamurthy Ganga, Gayathri

    ISSN: 1476-9271, 1476-928X, 1476-928X
    Veröffentlicht: England Elsevier Ltd 01.10.2025
    Veröffentlicht in Computational biology and chemistry (01.10.2025)
    “…  % on unseen molecules), demonstrating superior generalization. Using a Graph Convolutional Network-based Variational Autoencoder (GCN-VAE …”
    Volltext
    Journal Article
  11. 11

    Automated site layout generation for buildings using graph constrained generative adversarial network von Jiang, Ming, Chen, Yimin, Liu, Xiaoping, Gao, Jinding

    ISSN: 1996-3599, 1996-8744
    Veröffentlicht: Beijing Tsinghua University Press 09.10.2025
    Veröffentlicht in Building simulation (09.10.2025)
    “… ), which consists of a graph variational autoencoder (GraphVAE) and a GAN framework. In this model, parcels are represented as tuples, while site layouts within each parcel …”
    Volltext
    Journal Article
  12. 12

    Bridging VAE-Derived Latent Gene Representations and Graph Neural Networks for Improved Drug Response Prediction von Huang, Yen-Hua, Chiu, Yen-Jung

    ISSN: 2694-0604, 2694-0604
    Veröffentlicht: United States IEEE 01.07.2025
    “… In this study, we develop a pharmacogenomics classification framework using Graph Convolutional Networks (GCNs …”
    Volltext
    Tagungsbericht Journal Article
  13. 13

    Enhancing Facial Reconstruction Using Graph Attention Networks von Lee, Hyeong Geun, Hur, Jee Sic, Yoon, Yeo Chan, Kim, Soo Kyun

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: Piscataway IEEE 01.01.2023
    Veröffentlicht in IEEE access (01.01.2023)
    “… By contrast, restoration methods utilizing Graph Convolution Networks (GCN) offer the advantages of non-linearity and direct regression of vertex coordinates and colors …”
    Volltext
    Journal Article
  14. 14

    In-chip artificial intelligence technology for generating and self-correcting the topology of low-consumption RC filters von Zainab Al-Araji

    ISSN: 1681-6900, 2412-0758
    Veröffentlicht: Unviversity of Technology- Iraq 16.08.2025
    Veröffentlicht in Engineering and Technology Journal (16.08.2025)
    “… This study presents an innovative self-tuning system for first-class RC filter circuits, specially designed to achieve a target cut-off frequency of 500 kHz …”
    Volltext
    Journal Article
  15. 15

    Measuring the influence and amplification of users on social network with unsupervised behaviors learning and efficient interaction-based knowledge graph von Tran, Quan M., Nguyen, Hien D., Huynh, Tai, Nguyen, Kha V., Hoang, Suong N., Pham, Vuong T.

    ISSN: 1382-6905, 1573-2886
    Veröffentlicht: New York Springer US 01.11.2022
    Veröffentlicht in Journal of combinatorial optimization (01.11.2022)
    “… Besides, an unsupervised deep learning model based on Variational Graph Autoencoder is also constructed to further learn and explore the behavior of users …”
    Volltext
    Journal Article
  16. 16

    TV-CCANM: a transformer variational inference in confounding cascade additive noise model for causal effect estimation von Ahmad, Sohail, Wang, Hong

    ISSN: 0094-9655, 1563-5163
    Veröffentlicht: Abingdon Taylor & Francis 22.09.2025
    Veröffentlicht in Journal of statistical computation and simulation (22.09.2025)
    “… While the Confounding Cascade Nonlinear Additive Noise Model (CCANM) coupled with variational autoencoders (VAEs …”
    Volltext
    Journal Article
  17. 17

    Open-world structured sequence learning via dense target encoding von Zhang, Qin, Liu, Ziqi, Li, Qincai, Xiang, Haolong, Yu, Zhizhi, Chen, Junyang, Zhang, Peng, Chen, Xiaojun

    ISSN: 0020-0255
    Veröffentlicht: Elsevier Inc 01.10.2024
    Veröffentlicht in Information sciences (01.10.2024)
    “… Structured sequences are popularly used to describe graph data with time-evolving node features and edges …”
    Volltext
    Journal Article
  18. 18

    A densely connected framework for cancer subtype classification von Li, Yu, Zheng, Denggao, Sun, Kaijie, Qin, Chi, Duan, Yuchen, Zhou, Qingqing, Yin, Yunxia, Kan, Hongxing, Hu, Jili

    ISSN: 1471-2105, 1471-2105
    Veröffentlicht: London BioMed Central 18.07.2025
    Veröffentlicht in BMC bioinformatics (18.07.2025)
    “… Results We propose DEGCN, a novel deep learning model that integrates a three-channel Variational Autoencoder (VAE …”
    Volltext
    Journal Article
  19. 19

    GraphTune: A Learning-Based Graph Generative Model With Tunable Structural Features von Watabe, Kohei, Nakazawa, Shohei, Sato, Yoshiki, Tsugawa, Sho, Nakagawa, Kenji

    ISSN: 2327-4697, 2334-329X
    Veröffentlicht: Piscataway IEEE 01.07.2023
    “… ) and a Conditional Variational AutoEncoder …”
    Volltext
    Journal Article
  20. 20

    GraphTune: A Learning-based Graph Generative Model with Tunable Structural Features von Watabe, Kohei, Nakazawa, Shohei, Sato, Yoshiki, Tsugawa, Sho, Nakagawa, Kenji

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 05.04.2023
    Veröffentlicht in arXiv.org (05.04.2023)
    “… ) and a Conditional Variational AutoEncoder …”
    Volltext
    Paper