Výsledky vyhľadávania - Graph Variational Autoencoder

Upresniť hľadanie
  1. 1

    Fragment‐based deep molecular generation using hierarchical chemical graph representation and multi‐resolution graph variational autoencoder Autor Gao, Zhenxiang, Wang, Xinyu, Blumenfeld Gaines, Blake, Shi, Xuetao, Bi, Jinbo, Song, Minghu

    ISSN: 1868-1743, 1868-1751, 1868-1751
    Vydavateľské údaje: Germany Wiley Subscription Services, Inc 01.05.2023
    Vydané v Molecular informatics (01.05.2023)
    “…Graph generative models have recently emerged as an interesting approach to construct molecular structures atom‐by‐atom or fragment‐by‐fragment…”
    Získať plný text
    Journal Article
  2. 2

    VCGAE++: variational collective graph autoEncoder for multi-behavior recommendation: VCGAE++: variational collective graph autoEncoder for multi-behavior Autor Zhuang, Yingxuan, Liu, Yang, Pan, Weike, Ming, Zhong

    ISSN: 0219-1377, 0219-3116
    Vydavateľské údaje: London Springer London 01.09.2025
    Vydané v Knowledge and information systems (01.09.2025)
    “…Variational autoencoder (VAE) is known as a classic and effective method in modeling users…”
    Získať plný text
    Journal Article
  3. 3

    Identification of microbe–disease signed associations via multi-scale variational graph autoencoder based on signed message propagation Autor Zhu, Huan, Hao, Hongxia, Yu, Liang

    ISSN: 1741-7007, 1741-7007
    Vydavateľské údaje: London BioMed Central 15.08.2024
    Vydané v BMC biology (15.08.2024)
    “… MSignVGAE employs a graph variational autoencoder to model noisy signed association data and extends the multi-scale concept to enhance representation capabilities…”
    Získať plný text
    Journal Article
  4. 4

    VGAE-CCI: variational graph autoencoder-based construction of 3D spatial cell–cell communication network Autor Zhang, Tianjiao, Zhang, Xiang, Wu, Zhenao, Ren, Jixiang, Zhao, Zhongqian, Zhang, Hongfei, Wang, Guohua, Wang, Tao

    ISSN: 1467-5463, 1477-4054, 1477-4054
    Vydavateľské údaje: England Oxford University Press 22.11.2024
    Vydané v Briefings in bioinformatics (22.11.2024)
    “…Abstract Cell–cell communication plays a critical role in maintaining normal biological functions, regulating development and differentiation, and controlling…”
    Získať plný text
    Journal Article
  5. 5

    Analysis of Training and Seed Bias in Small Molecules Generated with a Conditional Graph-Based Variational Autoencoder─Insights for Practical AI-Driven Molecule Generation Autor Kang, Seung-Gu, Morrone, Joseph A, Weber, Jeffrey K, Cornell, Wendy D

    ISSN: 1549-960X, 1549-960X
    Vydavateľské údaje: United States 28.02.2022
    “… In this work, we analyze the impact of seed and training bias on the output of an activity-conditioned graph-based variational autoencoder (VAE…”
    Zistit podrobnosti o prístupe
    Journal Article
  6. 6

    MAVGAE: a multimodal framework for predicting asymmetric drug-drug interactions based on variational graph autoencoder Autor Deng, Zengqian, Xu, Jie, Feng, Yinfei, Dong, Liangcheng, Zhang, Yuanyuan

    ISSN: 1025-5842, 1476-8259, 1476-8259
    Vydavateľské údaje: England Taylor & Francis 19.05.2025
    “…Drug-drug interactions refer to the phenomena wherein the potency, duration, or effectiveness of one or multiple drugs undergo alterations of varying degrees…”
    Získať plný text
    Journal Article
  7. 7

    A ^VGAE: An Attribute-Augmented Adversarial Variational Graph Autoencoder for Link Prediction Autor Pan, Zhihong, Zhong, Zhijie, Wei, Lingling, Lin, Yunxuan, Li, Weisheng, Lin, Ronghua, Tang, Yong

    ISSN: 2329-924X, 2373-7476
    Vydavateľské údaje: IEEE 16.06.2025
    “… variational graph autoencoder (A<inline-formula><tex-math notation="LaTeX">{}^{3}</tex-math></inline-formula>VGAE), which can effectively solve the above two problems…”
    Získať plný text
    Journal Article
  8. 8

    MPI-VGAE: protein–metabolite enzymatic reaction link learning by variational graph autoencoders Autor Wang, Cheng, Yuan, Chuang, Wang, Yahui, Chen, Ranran, Shi, Yuying, Zhang, Tao, Xue, Fuzhong, Patti, Gary J, Wei, Leyi, Hou, Qingzhen

    ISSN: 1467-5463, 1477-4054, 1477-4054
    Vydavateľské údaje: England Oxford University Press 20.07.2023
    Vydané v Briefings in bioinformatics (20.07.2023)
    “…–protein interaction (MPI) prediction are still very limited. In this study, we developed a Variational Graph Autoencoders (VGAE…”
    Získať plný text
    Journal Article
  9. 9

    A Spatial-Temporal Variational Graph Attention Autoencoder Using Interactive Information for Fault Detection in Complex Industrial Processes Autor Lv, Mingjie, Li, Yonggang, Liang, Huiping, Sun, Bei, Yang, Chunhua, Gui, Weihua

    ISSN: 2162-237X, 2162-2388, 2162-2388
    Vydavateľské údaje: United States IEEE 01.03.2024
    “… A spatial-temporal variational graph attention autoencoder (STVGATE) using interactive information is proposed for fault detection, which aims to effectively capture the spatial and temporal features of the interconnected…”
    Získať plný text
    Journal Article
  10. 10

    Dual stream fusion link prediction for sparse graph based on variational graph autoencoder and pairwise learning Autor Li, Xun, Cai, Hongyun, Feng, Chuan, Zhao, Ao

    ISSN: 0306-4573
    Vydavateľské údaje: Elsevier Ltd 01.05.2025
    Vydané v Information processing & management (01.05.2025)
    “… To address these issues, this paper proposes a novel link prediction method for sparse graphs based on variational graph autoencoder and pairwise learning…”
    Získať plný text
    Journal Article
  11. 11

    A Generative Framework for Predictive Modeling of Multiple Chronic Conditions Using Graph Variational Autoencoder and Bandit-Optimized Graph Neural Network Autor Rico, Julian Carvajal, Alaeddini, Adel, Faruqui, Syed Hasib Akhter, Fisher-Hoch, Susan P, Mccormick, Joseph B

    ISSN: 2168-2194, 2168-2208, 2168-2208
    Vydavateľské údaje: United States IEEE 01.10.2025
    “… Our framework employs a graph variational autoencoder (GVAE) to capture the complex relationships in patient data…”
    Získať plný text
    Journal Article
  12. 12

    Efficient learning of non-autoregressive graph variational autoencoders for molecular graph generation Autor Kwon, Youngchun, Yoo, Jiho, Choi, Youn-Suk, Son, Won-Joon, Lee, Dongseon, Kang, Seokho

    ISSN: 1758-2946, 1758-2946
    Vydavateľské údaje: Cham Springer International Publishing 21.11.2019
    Vydané v Journal of cheminformatics (21.11.2019)
    “… In this paper, we present an improved learning method involving a graph variational autoencoder for efficient molecular graph generation in a non-autoregressive manner…”
    Získať plný text
    Journal Article
  13. 13

    Prediction of microbe–drug associations based on a modified graph attention variational autoencoder and random forest Autor Wang, Bo, Ma, Fangjian, Du, Xiaoxin, Zhang, Guangda, Li, Jingyou

    ISSN: 1664-302X, 1664-302X
    Vydavateľské údaje: Switzerland Frontiers Media S.A 31.05.2024
    Vydané v Frontiers in microbiology (31.05.2024)
    “… In this study, we developed a computational framework based on a modified graph attention variational autoencoder (MGAVAEMDA…”
    Získať plný text
    Journal Article
  14. 14

    Transformer graph variational autoencoder for generative molecular design Autor Nguyen, Trieu, Karolak, Aleksandra

    ISSN: 1542-0086, 1542-0086
    Vydavateľské údaje: United States 18.11.2025
    Vydané v Biophysical journal (18.11.2025)
    “… To address this, we present the transformer graph variational autoencoder (TGVAE), an innovative AI model that employs molecular graphs as input data, thus capturing…”
    Zistit podrobnosti o prístupe
    Journal Article
  15. 15

    Multiresolution equivariant graph variational autoencoder Autor Hy, Truong Son, Kondor, Risi

    ISSN: 2632-2153, 2632-2153
    Vydavateľské údaje: Bristol IOP Publishing 01.03.2023
    “…In this paper, we propose Multiresolution Equivariant Graph Variational Autoencoders (MGVAE…”
    Získať plný text
    Journal Article
  16. 16

    Identifying disease-related microbes based on multi-scale variational graph autoencoder embedding Wasserstein distance Autor Zhu, Huan, Hao, Hongxia, Yu, Liang

    ISSN: 1741-7007, 1741-7007
    Vydavateľské údaje: London BioMed Central 20.12.2023
    Vydané v BMC biology (20.12.2023)
    “… Results In this work, we proposed a novel framework, Multi-scale Variational Graph AutoEncoder embedding Wasserstein distance (MVGAEW…”
    Získať plný text
    Journal Article
  17. 17

    Deep graph embedding learning based on multi-variational graph autoencoders for POI recommendation: Deep graph embedding learning Autor Gong, Weihua, Shen, Genhang, Zhao, Anlun, Yang, Lianghuai, Cheng, Zhen

    ISSN: 1384-5810, 1573-756X
    Vydavateľské údaje: New York Springer US 19.05.2025
    Vydané v Data mining and knowledge discovery (19.05.2025)
    “… To address this challenge, we propose a new unified heterogeneous graph embedding framework by leveraging multimodal variational graph autoencoders, called MultiVGAE…”
    Získať plný text
    Journal Article
  18. 18

    Deep graph embedding learning based on multi-variational graph autoencoders for POI recommendation Autor Gong, Weihua, Shen, Genhang, Zhao, Anlun, Yang, Lianghuai, Cheng, Zhen

    ISSN: 1384-5810, 1573-756X
    Vydavateľské údaje: New York Springer Nature B.V 01.07.2025
    Vydané v Data mining and knowledge discovery (01.07.2025)
    “… To address this challenge, we propose a new unified heterogeneous graph embedding framework by leveraging multimodal variational graph autoencoders, called MultiVGAE…”
    Získať plný text
    Journal Article
  19. 19

    Dirichlet Process Prior for Student’s t Graph Variational Autoencoders Autor Zhao, Yuexuan, Huang, Jing

    ISSN: 1999-5903, 1999-5903
    Vydavateľské údaje: Basel MDPI AG 01.03.2021
    Vydané v Future internet (01.03.2021)
    “…Graph variational auto-encoder (GVAE) is a model that combines neural networks and Bayes methods, capable of deeper exploring the influential latent features of graph reconstruction…”
    Získať plný text
    Journal Article
  20. 20

    Importance weighted variational graph autoencoder Autor Tao, Yuhao, Guo, Lin, Zhao, Shuchang, Zhang, Shiqing

    ISSN: 2199-4536, 2198-6053
    Vydavateľské údaje: Cham Springer International Publishing 01.01.2026
    Vydané v Complex & intelligent systems (01.01.2026)
    “…Variational Graph Autoencoder (VGAE) is a widely explored model for learning the distribution of graph data…”
    Získať plný text
    Journal Article