Suchergebnisse - Fuzzy C-regression clustering
-
1
T–S fuzzy model identification based on a novel fuzzy c-regression model clustering algorithm
ISSN: 0952-1976, 1873-6769Veröffentlicht: Elsevier Ltd 01.06.2009Veröffentlicht in Engineering applications of artificial intelligence (01.06.2009)“… This paper proposes a novel approach for identification of Takagi–Sugeno (T–S) fuzzy model, which is based on a new fuzzy c-regression model (FCRM …”
Volltext
Journal Article -
2
A type-2 fuzzy c-regression clustering algorithm for Takagi–Sugeno system identification and its application in the steel industry
ISSN: 0020-0255, 1872-6291Veröffentlicht: Elsevier Inc 15.03.2012Veröffentlicht in Information sciences (15.03.2012)“… This paper proposes a new type-2 fuzzy c-regression clustering algorithm for the structure identification phase of Takagi–Sugeno (T–S) systems …”
Volltext
Journal Article -
3
Incremental Fuzzy C-Regression Clustering From Streaming Data for Local-Model-Network Identification
ISSN: 1063-6706, 1941-0034Veröffentlicht: New York IEEE 01.04.2020Veröffentlicht in IEEE transactions on fuzzy systems (01.04.2020)“… In this paper, a new approach to evolving fuzzy model identification from streaming data is given …”
Volltext
Journal Article -
4
Hybrid System Identification by Incremental Fuzzy C-regression Clustering
ISSN: 1558-4739Veröffentlicht: IEEE 01.07.2020Veröffentlicht in IEEE International Fuzzy Systems conference proceedings (01.07.2020)“… In this paper, an approach to the identification of hybrid systems is discussed. It is based on the incremental fuzzy C-regression clustering …”
Volltext
Tagungsbericht -
5
Fuzzy Ordered c-Means Clustering and Least Angle Regression for Fuzzy Rule-Based Classifier: Study for Imbalanced Data
ISSN: 1063-6706, 1941-0034Veröffentlicht: IEEE 01.11.2020Veröffentlicht in IEEE transactions on fuzzy systems (01.11.2020)“… This article introduces a new classifier design method that is based on a modification of the traditional fuzzy clustering …”
Volltext
Journal Article -
6
A fuzzy C‐regression model algorithm using a new PSO algorithm
ISSN: 0890-6327, 1099-1115Veröffentlicht: Bognor Regis Wiley Subscription Services, Inc 01.01.2018Veröffentlicht in International journal of adaptive control and signal processing (01.01.2018)“… ‐output local linear Takagi‐Sugeno fuzzy models using the weighted recursive least squares (WRLS …”
Volltext
Journal Article -
7
Interacting T-S fuzzy particle filter algorithm for transfer probability matrix of adaptive online estimation model
ISSN: 1051-2004, 1095-4333Veröffentlicht: Elsevier Inc 01.03.2021Veröffentlicht in Digital signal processing (01.03.2021)“… •The proposed algorithm can be regarded as a switching dynamical model.•A fuzzy C-regression clustering method based on maximum correntropy principle and spatial-temporal information is proposed …”
Volltext
Journal Article -
8
Fuzzy C-Regression Clustering Algorithm Based 7-Dof Redundant Manipulators Inverse Dynamics Control
ISSN: 1948-9447Veröffentlicht: IEEE 16.05.2025Veröffentlicht in Chinese Control and Decision Conference (16.05.2025)“… To address this challenge, we propose a data-driven approach using the interval type-2 (IT2) fuzzy c-regression clustering …”
Volltext
Tagungsbericht -
9
Dynamic Type-2 Fuzzy Dependent Dirichlet Regression Mixture clustering model
ISSN: 1568-4946, 1872-9681Veröffentlicht: Elsevier B.V 01.08.2017Veröffentlicht in Applied soft computing (01.08.2017)“… ) technique and Interval Type-2 Fuzzy C-regression Clustering Model (IT2FCRM). DDPM method demonstrates that the probability of assigning data to a cluster including …”
Volltext
Journal Article -
10
A novel recursive T-S fuzzy semantic modeling approach for discrete state-space systems
ISSN: 0925-2312, 1872-8286Veröffentlicht: Elsevier B.V 07.05.2019Veröffentlicht in Neurocomputing (Amsterdam) (07.05.2019)“… •Fuzzy correntropy is constructed.•A novel kernel fuzzy C-regression model clustering based on fuzzy correntropy is proposed …”
Volltext
Journal Article -
11
Rule-based fuzzy neural networks realized with the aid of linear function Prototype-driven fuzzy clustering and layer Reconstruction-based network design strategy
ISSN: 0957-4174, 1873-6793Veröffentlicht: Elsevier Ltd 01.06.2023Veröffentlicht in Expert systems with applications (01.06.2023)“… The LFPFC constitutes a new clustering technique inspired by the fuzzy c-regression model (FCRM …”
Volltext
Journal Article -
12
Interval type-2 modified fuzzy c-regression model clustering algorithm in TS Fuzzy Model identification
Veröffentlicht: IEEE 01.07.2016Veröffentlicht in 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) (01.07.2016)“… This paper introduces an interval type-2 modified fuzzy c-regression model (IT2MFCRM) clustering algorithm for identifying the structure in TS Fuzzy Model …”
Volltext
Tagungsbericht -
13
Fuzzy weighted c-harmonic regressions clustering algorithm
ISSN: 1432-7643, 1433-7479Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2018Veröffentlicht in Soft computing (Berlin, Germany) (01.07.2018)“… As a well-known regression clustering algorithm, fuzzy c -regressions (FCR) has been widely studied and applied in various areas …”
Volltext
Journal Article -
14
Block Sparse Representations in Modified Fuzzy C-Regression Model Clustering Algorithm for TS Fuzzy Model Identification
ISBN: 1479975605, 9781479975600Veröffentlicht: IEEE 01.12.2015Veröffentlicht in 2015 IEEE Symposium Series on Computational Intelligence (01.12.2015)“… This noise clustering concept has been taken into the proposed objective function to obtain the fuzzy partition matrix of product space data …”
Volltext
Tagungsbericht -
15
Hinging hyperplane based regression tree identified by fuzzy clustering and its application
ISSN: 1568-4946, 1872-9681Veröffentlicht: Elsevier B.V 01.02.2013Veröffentlicht in Applied soft computing (01.02.2013)“… A novel tool for regression tree identification is proposed based on the synergistic combination of fuzzy c-regression clustering and the concept of hierarchical modeling. In a special case (c=2 …”
Volltext
Journal Article -
16
基于改进模糊C回归聚类的水轮发电机组的模糊辨识
ISSN: 1007-2284Veröffentlicht: 中国长江电力股份有限公司白鹤滩电厂,四川凉山 615400%华中科技大学土木与水利工程学院,武汉 430074%长江三峡能事达电气股份有限公司,武汉 430000 15.09.2021Veröffentlicht in 中国农村水利水电 (15.09.2021)“… TK730; 针对水轮发电机组精确建模的难题,提出了一种基于改进模糊C回归聚类的T-S模糊模型辨识方法.考虑到样本输出值与聚类超平面输出之间的误差值指标的重要性,对于模糊C回归聚类算法进行了改进.该算法将误差值的倒数赋给对应的样本隶属度,构建新的权重矩阵用于更新聚类超平面,从而加速聚类朝向最优聚类超平面的收敛;提出一个 …”
Volltext
Journal Article -
17
Intuitionistic fuzzy C-regression by using least squares support vector regression
ISSN: 0957-4174, 1873-6793Veröffentlicht: Elsevier Ltd 01.12.2016Veröffentlicht in Expert systems with applications (01.12.2016)“… •The novel clustering algorithm improves conventional fuzzy c-regression model.•Empirical results indicate that the proposed clustering algorithm has superior performance …”
Volltext
Journal Article -
18
The estimation of the state of charge for lithium-ion battery by fuzzy c-regression model (FCRM) clustering algorithm
ISBN: 9781457706523, 1457706520ISSN: 1062-922XVeröffentlicht: IEEE 01.10.2011Veröffentlicht in 2011 IEEE International Conference on Systems, Man, and Cybernetics (01.10.2011)“… In this paper, the estimation of the state of charge (SOC) of lithium-ion battery by fuzzy c-regression model (FCRM …”
Volltext
Tagungsbericht -
19
A modified fuzzy c-regression model clustering algorithm for T-S fuzzy model identification
ISBN: 9781457704130, 1457704137Veröffentlicht: IEEE 01.03.2011Veröffentlicht in 2011 8th International Multi-Conference on Systems, Signals and Devices (01.03.2011)“… In this paper, a modified fuzzy c-regression model (FCRM) clustering algorithm for identification of Takagi-Sugeno …”
Volltext
Tagungsbericht -
20
A study of cluster validity criteria for the fuzzy c-regression models clustering algorithm
ISBN: 142440990X, 9781424409907ISSN: 1062-922XVeröffentlicht: IEEE 01.10.2007Veröffentlicht in 2007 IEEE International Conference on Systems, Man and Cybernetics (01.10.2007)“… The fuzzy c-regression models (FCRM) clustering algorithm can fit data to locally regression models which are linear in their parameters and be used as a tool to the identification of complex nonlinear systems …”
Volltext
Tagungsbericht

