Suchergebnisse - Forward–reflected–backward splitting algorithm*
-
1
Forward–Reflected–Backward Splitting Algorithms with Momentum: Weak, Linear and Strong Convergence Results
ISSN: 0022-3239, 1573-2878Veröffentlicht: New York Springer US 01.06.2024Veröffentlicht in Journal of optimization theory and applications (01.06.2024)“… This paper studies the forward–reflected–backward splitting algorithm with momentum terms for monotone inclusion problem of the sum of a maximal monotone and Lipschitz continuous monotone operators in Hilbert spaces. The forward–reflected …”
Volltext
Journal Article -
2
Two Relaxed Inertial Forward–Reflected–Backward Splitting Algorithms With Momentum Terms
ISSN: 2314-4629, 2314-4785Veröffentlicht: John Wiley & Sons, Inc 01.01.2025Veröffentlicht in Journal of Mathematics (01.01.2025)“… –Tam’s splitting algorithm and its inertial version …”
Volltext
Journal Article -
3
Two-step inertial forward-reflected-backward splitting based algorithm for nonconvex mixed variational inequalities
ISSN: 0377-0427, 1879-1778Veröffentlicht: Elsevier B.V 01.07.2023Veröffentlicht in Journal of computational and applied mathematics (01.07.2023)“… This paper presents a modification of a recently studied Malitsky–Tam forward-reflected-backward splitting method with two-step inertial extrapolation to solve nonconvex mixed variational inequalities …”
Volltext
Journal Article -
4
Training of extreme learning machine network based on novel generalized inertial forward-reflected-backward splitting algorithm
ISSN: 0233-1934, 1029-4945Veröffentlicht: 26.06.2025Veröffentlicht in Optimization (26.06.2025)Volltext
Journal Article -
5
Two-step inertial forward–reflected–anchored–backward splitting algorithm for solving monotone inclusion problems
ISSN: 2238-3603, 1807-0302Veröffentlicht: Cham Springer International Publishing 01.12.2023Veröffentlicht in Computational & applied mathematics (01.12.2023)“… –backward splitting algorithm of Malitsky and Tam in a real Hilbert space. Our proposed algorithm converges strongly to a zero of the sum of a set-valued maximal monotone operator and a single-valued monotone Lipschitz continuous operator …”
Volltext
Journal Article -
6
Convergence rates of the modified forward reflected backward splitting algorithm in Banach spaces
ISSN: 2473-6988, 2473-6988Veröffentlicht: AIMS Press 01.01.2023Veröffentlicht in AIMS mathematics (01.01.2023)“… In this paper, we introduce a non-traditional forward-backward splitting method for solving such minimization problem …”
Volltext
Journal Article -
7
New accelerated splitting algorithm for monotone inclusion problems
ISSN: 0233-1934, 1029-4945Veröffentlicht: Philadelphia Taylor & Francis 17.02.2025Veröffentlicht in Optimization (17.02.2025)“… Forward-reflected-backward splitting algorithm with inertial extrapolation of two inertial effects to find a zero of the sum of a maximal monotone and a Lipschitz continuous monotone operator is studied in this paper …”
Volltext
Journal Article -
8
Backward-Forward-Reflected-Backward Splitting for Three Operator Monotone Inclusions
ISSN: 0096-3003Veröffentlicht: Elsevier Inc 15.09.2020Veröffentlicht in Applied mathematics and computation (15.09.2020)“… •We develop two splitting algorithms for finding a zero of the sum of three monotone operators, one of which is assumed to be Lipschitz continuous …”
Volltext
Journal Article -
9
An Inertial Semi-forward-reflected-backward Splitting and Its Application
ISSN: 1439-8516, 1439-7617Veröffentlicht: Beijing Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society 01.02.2022Veröffentlicht in Acta mathematica Sinica. English series (01.02.2022)“… This work is concerned with an inertial semi-forward-reflected-backward splitting algorithm of approaching the solution of sum of a maximally monotone operator, a cocoercive operator and a monotone …”
Volltext
Journal Article -
10
Strong Convergence of Forward–Reflected–Backward Splitting Methods for Solving Monotone Inclusions with Applications to Image Restoration and Optimal Control
ISSN: 0885-7474, 1573-7691Veröffentlicht: New York Springer US 01.03.2023Veröffentlicht in Journal of scientific computing (01.03.2023)“… –reflected–backward splitting method of Malitsky and Tam for finding a zero of the sum of two monotone operators in a real Hilbert space …”
Volltext
Journal Article -
11
Convergence Analysis of a New Forward-Reflected-Backward Algorithm for Four Operators Without Cocoercivity
ISSN: 0022-3239, 1573-2878Veröffentlicht: New York Springer US 01.10.2024Veröffentlicht in Journal of optimization theory and applications (01.10.2024)“… In this paper, we propose a new splitting algorithm to find the zero of a monotone inclusion problem that features the sum of three maximal monotone operators and a Lipschitz continuous monotone …”
Volltext
Journal Article -
12
A Bregman inertial forward-reflected-backward method for nonconvex minimization
ISSN: 0925-5001, 1573-2916Veröffentlicht: New York Springer US 01.06.2024Veröffentlicht in Journal of global optimization (01.06.2024)“… We propose a Bregman inertial forward-reflected-backward (BiFRB) method for nonconvex composite problems …”
Volltext
Journal Article -
13
Forward-reflected-backward and shadow-Douglas–Rachford with partial inverse for solving monotone inclusions
ISSN: 1432-2994, 1432-5217Veröffentlicht: Heidelberg Springer Nature B.V 01.12.2024Veröffentlicht in Mathematical methods of operations research (Heidelberg, Germany) (01.12.2024)“… , and a normal cone to a vector subspace. Our algorithms split and exploits the intrinsic properties of each operator involved in the inclusion …”
Volltext
Journal Article -
14
Forward-reflected-backward method with variance reduction
ISSN: 0926-6003, 1573-2894, 1573-2894Veröffentlicht: New York Springer US 01.11.2021Veröffentlicht in Computational optimization and applications (01.11.2021)“… We propose a variance reduced algorithm for solving monotone variational inequalities …”
Volltext
Journal Article -
15
A generalization of the forward-reflected-backward splitting method for monotone inclusions
ISSN: 0233-1934, 1029-4945Veröffentlicht: 04.01.2025Veröffentlicht in Optimization (04.01.2025)Volltext
Journal Article -
16
Forward-reflected-backward algorithms with double inertial extrapolations for variational inequalities with applications to image processing
ISSN: 1017-1398, 1572-9265Veröffentlicht: 20.05.2025Veröffentlicht in Numerical algorithms (20.05.2025)Volltext
Journal Article -
17
Bounded perturbation resilience of a regularized forward-reflected-backward splitting method for solving variational inclusion problems with applications
ISSN: 0233-1934, 1029-4945Veröffentlicht: Philadelphia Taylor & Francis 02.07.2024Veröffentlicht in Optimization (02.07.2024)“… The forward-reflected-backward splitting method recently introduced for solving variational inclusion problems involves just one forward evaluation and one backward evaluation of the monotone operator …”
Volltext
Journal Article -
18
Extension of forward-reflected-backward method to non-convex mixed variational inequalities
ISSN: 0925-5001, 1573-2916Veröffentlicht: New York Springer US 01.05.2023Veröffentlicht in Journal of global optimization (01.05.2023)“… This paper presents a modification of a recently studied forward-reflected-backward splitting method to solve non-convex mixed variational inequalities …”
Volltext
Journal Article -
19
A Mirror Inertial Forward–Reflected–Backward Splitting: Convergence Analysis Beyond Convexity and Lipschitz Smoothness
ISSN: 0022-3239, 1573-2878Veröffentlicht: New York Springer US 01.11.2024Veröffentlicht in Journal of optimization theory and applications (01.11.2024)“… This work investigates a Bregman and inertial extension of the forward–reflected–backward algorithm (Malitsky and Tam in SIAM J Optim 30 …”
Volltext
Journal Article -
20
Outer reflected forward-backward splitting algorithm with inertial extrapolation step
ISSN: 0233-1934, 1029-4945Veröffentlicht: Taylor & Francis 18.11.2025Veröffentlicht in Optimization (18.11.2025)“… This paper studies an outer reflected forward-backward splitting algorithm with an inertial step to find a zero of the sum of three monotone operators composing the maximal monotone operator …”
Volltext
Journal Article