Suchergebnisse - Fictitious domain methods for initial value and initial-boundary value problems involving PDEs
Andere Suchmöglichkeiten:
- Fictitious domain methods for initial value and initial-boundary value problems involving PDEs »
-
1
FINITE-ELEMENT METHODS FOR SOLVING INITIAL-BOUNDARY VALUE PROBLEMS
ISBN: 9798660633874Veröffentlicht: ProQuest Dissertations & Theses 01.01.1974Volltext
Dissertation -
2
Parallel fictitious domain method for a non-linear elliptic neumann boundary value problem
ISSN: 1070-5325, 1099-1506Veröffentlicht: Chichester, UK John Wiley & Sons, Ltd 01.01.1999Veröffentlicht in Numerical linear algebra with applications (01.01.1999)“… Parallelization of the algebraic fictitious domain method is considered for solving Neumann boundary value problems with variable coefficients …”
Volltext
Journal Article -
3
A local projection stabilization of fictitious domain method for elliptic boundary value problems
ISSN: 0168-9274, 1873-5460Veröffentlicht: Elsevier 2014Veröffentlicht in Applied numerical mathematics (2014)“… In this paper, a new consistent method based on local projections for the stabilization of a Dirichlet condition is presented in the framework of finite element method with a fictitious domain approach …”
Volltext
Journal Article -
4
A Finite Difference Fictitious Domain Wavelet Method for Solving Dirichlet Boundary Value Problem
ISSN: 1307-5543, 1307-5543Veröffentlicht: 05.08.2021Veröffentlicht in European journal of pure and applied mathematics (05.08.2021)“… In this paper, we introduce a Finite Difference Fictitious Domain Wavelet Method (FDFDWM …”
Volltext
Journal Article -
5
A local projection stabilization of fictitious domain method for elliptic boundary value problems
ISSN: 0168-9274, 1873-5460Veröffentlicht: Elsevier B.V 01.02.2014Veröffentlicht in Applied numerical mathematics (01.02.2014)“… In this paper, a new consistent method based on local projections for the stabilization of a Dirichlet condition is presented in the framework of finite element method with a fictitious domain approach …”
Volltext
Journal Article -
6
Fictitious domain method and separated representations for the solution of boundary value problems on uncertain parameterized domains
ISSN: 0045-7825, 1879-2138Veröffentlicht: Kidlington Elsevier B.V 01.01.2011Veröffentlicht in Computer methods in applied mechanics and engineering (01.01.2011)“… ► We propose a tensor-based method for the solution of PDEs defined on uncertain parameterized domains …”
Volltext
Journal Article -
7
A Fictitious Time Integration Method for a Quasilinear Elliptic Boundary Value Problem, Defined in an Arbitrary Plane Domain
ISSN: 1546-2218, 1546-2226Veröffentlicht: Henderson Tech Science Press 2009Veröffentlicht in Computers, materials & continua (2009)“… However, the above paper only considered a rectangular domain in the plane, and did not treat the difficulty arisen from the quasilinear PDE defined in an arbitrary plane domain …”
Volltext
Journal Article -
8
A Pseudospectral Fictitious Point Method for High Order Initial‐Boundary Value Problems
ISSN: 1064-8275, 1095-7197Veröffentlicht: Philadelphia Society for Industrial and Applied Mathematics 01.01.2006Veröffentlicht in SIAM journal on scientific computing (01.01.2006)“… These can lead to severe time stepping difficulties for PDEs. This is especially the case for equations with high order derivatives in space, requiring multiple conditions at one or both boundaries …”
Volltext
Journal Article -
9
A pseudospectral fictitious point method for high order initial-boundary value problems
ISSN: 1064-8275Veröffentlicht: Philadelphia, PA Society for Industrial and Applied Mathematics 2007Veröffentlicht in SIAM journal on scientific computing (2007)Volltext
Journal Article -
10
The fictitious domain method with H1-penalty for the Stokes problem with Dirichlet boundary condition
ISSN: 0168-9274Veröffentlicht: Elsevier BV 01.01.2018Veröffentlicht in Applied Numerical Mathematics (01.01.2018)Volltext
Journal Article -
11
The fictitious domain method with L2‐penalty for the Stokes problem with the Dirichlet boundary condition
ISSN: 0749-159X, 1098-2426Veröffentlicht: Wiley 20.11.2017Veröffentlicht in Numerical Methods for Partial Differential Equations (20.11.2017)Volltext
Journal Article -
12
A fictitious domain decomposition method for the solution of partially axisymmetric acoustic scattering problems. I. Dirichlet boundary conditions
ISSN: 0029-5981Veröffentlicht: 30.07.2002Veröffentlicht in International journal for numerical methods in engineering (30.07.2002)“… We present a fictitious domain decomposition method for the fast solution of high-frequency acoustic scattering problems characterized by a partially axisymmetric sound-soft scatterer …”
Volltext
Journal Article -
13
The fictitious domain method with L 2 ‐penalty for the Stokes problem with the Dirichlet boundary condition
ISSN: 0749-159X, 1098-2426Veröffentlicht: 01.05.2018Veröffentlicht in Numerical methods for partial differential equations (01.05.2018)“… We consider the fictitious domain method with L 2 ‐penalty for the Stokes problem with the Dirichlet boundary condition …”
Volltext
Journal Article -
14
Fictitious domain method with boundary value correction using penalty-free Nitsche method
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 14.10.2016Veröffentlicht in arXiv.org (14.10.2016)“… In this paper, we consider a fictitious domain approach based on a Nitsche type method without penalty …”
Volltext
Paper -
15
The fictitious domain method for the Stokes problem with Neumann/free-traction boundary condition
ISSN: 0916-7005, 1868-937XVeröffentlicht: Tokyo Springer Japan 01.08.2017Veröffentlicht in Japan journal of industrial and applied mathematics (01.08.2017)“… We consider the fictitious domain method for the Stokes problem with Neumann/free-traction boundary condition …”
Volltext
Journal Article -
16
The fictitious domain method with H1-penalty for the Stokes problem with Dirichlet boundary condition
ISSN: 0168-9274, 1873-5460Veröffentlicht: Elsevier B.V 01.01.2018Veröffentlicht in Applied numerical mathematics (01.01.2018)“… We consider the fictitious domain method with H1-penalty for the Stokes problem with Dirichlet boundary condition …”
Volltext
Journal Article -
17
The fictitious domain method with L2‐penalty for the Stokes problem with the Dirichlet boundary condition
ISSN: 0749-159X, 1098-2426Veröffentlicht: New York Wiley Subscription Services, Inc 01.05.2018Veröffentlicht in Numerical methods for partial differential equations (01.05.2018)“… We consider the fictitious domain method with L2‐penalty for the Stokes problem with the Dirichlet boundary condition …”
Volltext
Journal Article -
18
A consistent sharp interface fictitious domain method for moving boundary problems with arbitrarily polyhedral mesh
ISSN: 0271-2091, 1097-0363Veröffentlicht: Hoboken, USA John Wiley & Sons, Inc 01.07.2021Veröffentlicht in International journal for numerical methods in fluids (01.07.2021)“… A consistent, sharp interface fully Eulerian fictitious domain method is proposed in this article for moving boundary problems …”
Volltext
Journal Article -
19
A fictitious domain decomposition method for the solution of partially axisymmetric acoustic scattering problems. Part 2: Neumann boundary conditions
ISSN: 0029-5981, 1097-0207Veröffentlicht: Chichester, UK John Wiley & Sons, Ltd 07.09.2003Veröffentlicht in International journal for numerical methods in engineering (07.09.2003)“… We present a fictitious domain decomposition method for the fast solution of acoustic scattering problems characterized by a partially axisymmetric sound‐hard scatterer …”
Volltext
Journal Article -
20
Error Bounds for a Fictitious Domain Method with Lagrange Multiplier Treatment on the Boundary for a Dirichlet Problem
ISSN: 0916-7005, 1868-937XVeröffentlicht: Heidelberg Springer Nature B.V 01.02.1998Veröffentlicht in Japan journal of industrial and applied mathematics (01.02.1998)“… In this article we obtain discrete inf-sup conditions and error bounds for a fictitious domain with Lagrange multiplier treatment for the boundary condition on the curved boundary to an elliptic …”
Volltext
Journal Article

