Výsledky vyhledávání - Fast proximal objective function optimization

  1. 1

    Efficient 3D inversion of potential field data using fast proximal objective function optimization algorithm Autor Peng, Guomin, Liu, Zhan, Xu, Kaijun, Bai, Yongliang, Du, Runlin

    ISSN: 0926-9851, 1879-1859
    Vydáno: Elsevier B.V 01.12.2018
    Vydáno v Journal of applied geophysics (01.12.2018)
    “… We have developed an efficient 3D potential field data inversion method using fast proximal objective function (FPOF…”
    Získat plný text
    Journal Article
  2. 2

    A fast proximal gradient algorithm for decentralized composite optimization over directed networks Autor Zeng, Jinshan, He, Tao, Wang, Mingwen

    ISSN: 0167-6911, 1872-7956
    Vydáno: Elsevier B.V 01.09.2017
    Vydáno v Systems & control letters (01.09.2017)
    “…This paper proposes a fast decentralized algorithm for solving a consensus optimization problem defined in a directed networked multi-agent system, where the local objective functions have the smooth…”
    Získat plný text
    Journal Article
  3. 3

    Scalable Proximal Jacobian Iteration Method With Global Convergence Analysis for Nonconvex Unconstrained Composite Optimizations Autor Zhang, Hengmin, Qian, Jianjun, Gao, Junbin, Yang, Jian, Xu, Chunyan

    ISSN: 2162-237X, 2162-2388, 2162-2388
    Vydáno: United States IEEE 01.09.2019
    “…) for solving linearly constrained problems with separable objectives and the proximal gradient methods (PGMs…”
    Získat plný text
    Journal Article
  4. 4

    An accelerated proximal gradient method for multiobjective optimization Autor Tanabe, Hiroki, Fukuda, Ellen H., Yamashita, Nobuo

    ISSN: 0926-6003, 1573-2894
    Vydáno: New York Springer US 01.11.2023
    “…This paper presents an accelerated proximal gradient method for multiobjective optimization, in which each objective function is the sum of a continuously differentiable, convex function and a closed…”
    Získat plný text
    Journal Article
  5. 5

    Stochastic Proximal Gradient Consensus Over Random Networks Autor Hong, Mingyi, Chang, Tsung-Hui

    ISSN: 1053-587X, 1941-0476
    Vydáno: IEEE 01.06.2017
    “… Each agent has access to some local objective function, and it only has unbiased estimates of the gradients of the smooth component…”
    Získat plný text
    Journal Article
  6. 6

    Smoothing Accelerated Proximal Gradient Method with Fast Convergence Rate for Nonsmooth Convex Optimization Beyond Differentiability Autor Wu, Fan, Bian, Wei

    ISSN: 0022-3239, 1573-2878
    Vydáno: New York Springer US 01.05.2023
    “…We propose a smoothing accelerated proximal gradient (SAPG) method with fast convergence rate for finding a minimizer of a decomposable nonsmooth convex function over a closed convex set…”
    Získat plný text
    Journal Article
  7. 7

    A fast computational Gauss–Seidel type iPALM algorithm using an incremental aggregated gradient strategy for weakly convex composite optimization problems with application in image processing Autor Jia, Zehui, Hou, Junru, Dong, Ping, Liu, Zhiyu

    ISSN: 0377-0427
    Vydáno: Elsevier B.V 01.03.2026
    “…) for solving a class of nonconvex and nonsmooth composite optimization problems, whose objective function is the sum of a finite number of smooth nonconvex functions and nonsmooth weakly convex functions…”
    Získat plný text
    Journal Article
  8. 8

    A fast continuous time approach for non-smooth convex optimization using Tikhonov regularization technique Autor Karapetyants, Mikhail A.

    ISSN: 0926-6003, 1573-2894
    Vydáno: New York Springer US 01.03.2024
    “…In this paper we would like to address the classical optimization problem of minimizing a proper, convex and lower semicontinuous function via the second order in time dynamics, combining viscous…”
    Získat plný text
    Journal Article
  9. 9

    A fast dual proximal gradient algorithm for convex minimization and applications Autor Beck, Amir, Teboulle, Marc

    ISSN: 0167-6377, 1872-7468
    Vydáno: Elsevier B.V 01.01.2014
    Vydáno v Operations research letters (01.01.2014)
    “… We present a dual-based proximal gradient scheme for solving this problem. We show that although the rate of convergence of the dual objective function sequence converges to the optimal value with the rate O(1/k2…”
    Získat plný text
    Journal Article
  10. 10

    A fast proximal iteratively reweighted nuclear norm algorithm for nonconvex low-rank matrix minimization problems Autor Ge, Zhili, Zhang, Xin, Wu, Zhongming

    ISSN: 0168-9274, 1873-5460
    Vydáno: Elsevier B.V 01.09.2022
    Vydáno v Applied numerical mathematics (01.09.2022)
    “…In this paper, we propose a fast proximal iteratively reweighted nuclear norm algorithm with extrapolation for solving a class of nonconvex low-rank matrix minimization problems…”
    Získat plný text
    Journal Article
  11. 11

    Fast Proximal Gradient Methods for Nonsmooth Convex Optimization for Tomographic Image Reconstruction Autor Helou, Elias S., Zibetti, Marcelo V. W., Herman, Gabor T.

    ISSN: 1557-2064, 1557-2072
    Vydáno: New York Springer US 01.12.2020
    Vydáno v Sensing and imaging (01.12.2020)
    “…The Fast Proximal Gradient Method (FPGM) and the Monotone FPGM (MFPGM) for minimization of nonsmooth convex functions are introduced and applied to tomographic image reconstruction…”
    Získat plný text
    Journal Article
  12. 12

    A fast continuous time approach with time scaling for nonsmooth convex optimization Autor Boţ, Radu Ioan, Karapetyants, Mikhail A.

    ISSN: 2731-4235, 1687-1839, 2731-4235, 1687-1847
    Vydáno: Cham Springer International Publishing 16.12.2022
    “… From here, we derive fast convergence rates for the objective function along a path which is the image of the trajectory of the system through the proximal operator of the first. Moreover, we prove the weak convergence of the trajectory of the system to a global minimizer of the objective function. Finally, we provide multiple numerical examples illustrating the theoretical results…”
    Získat plný text
    Journal Article
  13. 13

    A Novel AUC Maximization Imbalanced Learning Approach for Predicting Composite Outcomes in COVID-19 Hospitalized Patients Autor Wang, Guanjin, Kwok, Stephen Wai Hang, Yousufuddin, Mohammed, Sohel, Ferdous

    ISSN: 2168-2194, 2168-2208, 2168-2208
    Vydáno: United States IEEE 01.08.2023
    “… The model also should have fewer tuning hyperparameters to ensure good usability and exhibit potential for fast incremental learning…”
    Získat plný text
    Journal Article
  14. 14

    Proximal gradient methods with inexact oracle of degree q for composite optimization: Proximal gradient methods with inexact oracle Autor Nabou, Yassine, Glineur, François, Necoara, Ion

    ISSN: 1862-4472, 1862-4480
    Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2025
    Vydáno v Optimization letters (01.03.2025)
    “… We analyze the convergence behavior of a (fast) inexact proximal gradient method using such an oracle for solving (non…”
    Získat plný text
    Journal Article
  15. 15

    On the convergence of an inertial proximal algorithm with a Tikhonov regularization term Autor László, Szilárd Csaba

    ISSN: 1007-5704
    Vydáno: Elsevier B.V 01.10.2025
    “… We show that for appropriate Tikhonov regularization parameters the value of the objective function in the sequences generated by our algorithm converge fast (with arbitrary rate…”
    Získat plný text
    Journal Article
  16. 16

    First-order methods of smooth convex optimization with inexact oracle Autor Devolder, Olivier, Glineur, François, Nesterov, Yurii

    ISSN: 0025-5610, 1436-4646
    Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2014
    Vydáno v Mathematical programming (01.08.2014)
    “… in particular their dependence on the accuracy of the oracle and the desired accuracy of the objective function…”
    Získat plný text
    Journal Article
  17. 17

    Proximal gradient methods with inexact oracle of degree q for composite optimization Autor Nabou, Yassine, Glineur, François, Necoara, Ion

    ISSN: 1862-4472, 1862-4480
    Vydáno: 01.03.2025
    Vydáno v Optimization letters (01.03.2025)
    “… We analyze the convergence behavior of a (fast) inexact proximal gradient method using such an oracle for solving (non…”
    Získat plný text
    Journal Article
  18. 18

    Fast and Global Optimal Nonconvex Matrix Factorization via Perturbed Alternating Proximal Point Autor Lu, Songtao, Hong, Mingyi, Wang, Zhengdao

    ISSN: 2379-190X
    Vydáno: IEEE 01.05.2019
    “… Alternating minimization is a simple but popular approach which has been applied to problems in optimization, machine learning, data mining, and signal processing, etc…”
    Získat plný text
    Konferenční příspěvek
  19. 19

    Local and global convergence of a general inertial proximal splitting scheme for minimizing composite functions Autor Johnstone, Patrick R., Moulin, Pierre

    ISSN: 0926-6003, 1573-2894
    Vydáno: New York Springer US 01.06.2017
    “… In these problems, the objective is the sum of two closed, proper, and convex functions where one is smooth and the other admits a computationally inexpensive proximal operator…”
    Získat plný text
    Journal Article
  20. 20

    A Proximal-Gradient Homotopy Method for the Sparse Least-Squares Problem Autor Xiao, Lin, Zhang, Tong

    ISSN: 1052-6234, 1095-7189
    Vydáno: Philadelphia Society for Industrial and Applied Mathematics 01.01.2013
    Vydáno v SIAM journal on optimization (01.01.2013)
    “… The standard proximal gradient method, also known as iterative soft-thresholding when applied to this problem, has low computational cost per iteration but a rather slow convergence rate…”
    Získat plný text
    Journal Article