Suchergebnisse - Doubly stochastic gradient algorithm

  1. 1

    New Scalable and Efficient Online Pairwise Learning Algorithm von Gu, Bin, Bao, Runxue, Zhang, Chenkang, Huang, Heng

    ISSN: 2162-237X, 2162-2388, 2162-2388
    Veröffentlicht: United States IEEE 01.12.2024
    “… To address this challenging problem, in this article, we propose a dynamic doubly stochastic gradient algorithm (D2SG …”
    Volltext
    Journal Article
  2. 2

    Pseudo-gradient algorithm for identification of doubly stochastic cylindrical image model von Krasheninnikov, Victor, Kuvayskova, Yuliya, Subbotin, Alexey

    ISSN: 1877-0509, 1877-0509
    Veröffentlicht: Elsevier B.V 2020
    Veröffentlicht in Procedia computer science (2020)
    “… The peculiarity of the domain for specifying such images requires its consideration in their models and processing algorithms …”
    Volltext
    Journal Article
  3. 3

    Accelerated Doubly Stochastic Gradient Algorithm for Large-scale Empirical Risk Minimization von Shen, Zebang, Qian, Hui, Mu, Tongzhou, Zhang, Chao

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 23.04.2023
    Veröffentlicht in arXiv.org (23.04.2023)
    “… In this paper, we propose a doubly stochastic algorithm with a novel accelerating multi-momentum technique to solve large scale empirical risk minimization problem for learning tasks …”
    Volltext
    Paper
  4. 4

    Faster doubly stochastic functional gradient by gradient preconditioning for scalable kernel methods von Zhang, Zhuan, Zhou, Shuisheng, Yang, Ting, Zhang, Junna

    ISSN: 0924-669X, 1573-7497
    Veröffentlicht: New York Springer US 01.05.2022
    Veröffentlicht in Applied intelligence (Dordrecht, Netherlands) (01.05.2022)
    “… The doubly stochastic functional gradient descent algorithm (DSG) that is memory friendly and computationally efficient can effectively scale up kernel methods …”
    Volltext
    Journal Article
  5. 5

    Scalable Kernel Ordinal Regression via Doubly Stochastic Gradients von Gu, Bin, Geng, Xiang, Li, Xiang, Shi, Wanli, Zheng, Guansheng, Deng, Cheng, Huang, Heng

    ISSN: 2162-237X, 2162-2388, 2162-2388
    Veröffentlicht: Piscataway IEEE 01.08.2021
    “… Doubly stochastic gradient (DSG) is a very efficient and scalable kernel learning algorithm that combines random feature approximation with stochastic functional optimization …”
    Volltext
    Journal Article
  6. 6

    A new large-scale learning algorithm for generalized additive models von Gu, Bin, Zhang, Chenkang, Huo, Zhouyuan, Huang, Heng

    ISSN: 0885-6125, 1573-0565
    Veröffentlicht: New York Springer US 01.09.2023
    Veröffentlicht in Machine learning (01.09.2023)
    “… After that, we propose a wrapper algorithm to optimize the generalized additive models. Importantly, we introduce a doubly stochastic gradient algorithm (DSG …”
    Volltext
    Journal Article
  7. 7

    Stochastic gradient descent for hybrid quantum-classical optimization von Sweke, Ryan, Wilde, Frederik, Meyer, Johannes, Schuld, Maria, Faehrmann, Paul K., Meynard-Piganeau, Barthélémy, Eisert, Jens

    ISSN: 2521-327X, 2521-327X
    Veröffentlicht: Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften 31.08.2020
    Veröffentlicht in Quantum (Vienna, Austria) (31.08.2020)
    “… Within the context of hybrid quantum-classical optimization, gradient descent based optimizers typically require the evaluation of expectation values with respect to the outcome of parameterized quantum circuits …”
    Volltext
    Journal Article
  8. 8

    Asynchronous Parallel Large-Scale Gaussian Process Regression von Dang, Zhiyuan, Gu, Bin, Deng, Cheng, Huang, Heng

    ISSN: 2162-237X, 2162-2388, 2162-2388
    Veröffentlicht: United States IEEE 01.06.2024
    “… To address this challenging problem, in this article, we propose an asynchronous doubly stochastic gradient algorithm to handle the large-scale training of GPR …”
    Volltext
    Journal Article
  9. 9

    Gradient-free method for distributed multi-agent optimization via push-sum algorithms von Yuan, Deming, Xu, Shengyuan, Lu, Junwei

    ISSN: 1049-8923, 1099-1239
    Veröffentlicht: Bognor Regis Blackwell Publishing Ltd 10.07.2015
    “… ‐doubly stochastic matrix. We present a distributed method that employs gradient‐free oracles and push …”
    Volltext
    Journal Article
  10. 10

    Block-Randomized Stochastic Proximal Gradient for Low-Rank Tensor Factorization von Fu, Xiao, Ibrahim, Shahana, Wai, Hoi-To, Gao, Cheng, Huang, Kejun

    ISSN: 1053-587X, 1941-0476
    Veröffentlicht: New York IEEE 2020
    Veröffentlicht in IEEE transactions on signal processing (2020)
    “… However, existing stochastic CPD algorithms are not flexible to incorporate a variety of constraints/regularization terms that are of interest in signal and data analytics …”
    Volltext
    Journal Article
  11. 11

    Accelerated Doubly Stochastic Gradient Descent for Tensor CP Decomposition von Wang, Qingsong, Cui, Chunfeng, Han, Deren

    ISSN: 0022-3239, 1573-2878
    Veröffentlicht: New York Springer US 01.05.2023
    Veröffentlicht in Journal of optimization theory and applications (01.05.2023)
    “… In this paper, we focus on the acceleration of doubly stochastic gradient descent method for computing the CANDECOMP/PARAFAC (CP …”
    Volltext
    Journal Article
  12. 12

    Randomized Gradient-Free Distributed Optimization Methods for a Multiagent System With Unknown Cost Function von Pang, Yipeng, Hu, Guoqiang

    ISSN: 0018-9286, 1558-2523
    Veröffentlicht: New York IEEE 01.01.2020
    Veröffentlicht in IEEE transactions on automatic control (01.01.2020)
    “… as compared with the doubly stochastic weighting matrix. Without the true gradient information, we establish asymptotic convergence to the approximated …”
    Volltext
    Journal Article
  13. 13

    Distributed Push-Sum Algorithm for Multi-Agent optimization Via One-Point Gradient Estimator von Wang, Cong, Yuan, Deming, Zhang, Baoyong

    ISSN: 1934-1768
    Veröffentlicht: Technical Committee on Control Theory, Chinese Association of Automation 01.07.2019
    Veröffentlicht in Chinese Control Conference (01.07.2019)
    “… We propose an efficient distributed optimization algorithm that is based on push-sum algorithm and one-point gradient estimator, which removes the needs for doubly stochastic weight matrix …”
    Volltext
    Tagungsbericht
  14. 14

    Push-Sum Distributed Online Optimization With Bandit Feedback von Wang, Cong, Xu, Shengyuan, Yuan, Deming, Zhang, Baoyong, Zhang, Zhengqiang

    ISSN: 2168-2267, 2168-2275, 2168-2275
    Veröffentlicht: United States IEEE 01.04.2022
    Veröffentlicht in IEEE transactions on cybernetics (01.04.2022)
    “… online convex optimization algorithm that achieves sublinear individual regret for every node is developed …”
    Volltext
    Journal Article
  15. 15

    The identification of doubly stochastic circular image model von Krasheninnikov, Victor, Malenova, Olga, Subbotin, Alexey

    ISSN: 1877-0509, 1877-0509
    Veröffentlicht: Elsevier B.V 2020
    Veröffentlicht in Procedia computer science (2020)
    “… In the present paper, autoregressive models of circular images are considered. To represent heterogeneous images with random heterogeneities, «doubly stochastic» models are used in which one or more images control the parameters of the resulting image. Pseudo-gradient algorithms for the modal identification are proposed. The conducted statistical modeling showed that these algorithms give good model identification …”
    Volltext
    Journal Article
  16. 16

    Block-wise primal-dual algorithms for large-scale doubly penalized ANOVA modeling von Fu, Penghui, Tan, Zhiqiang

    ISSN: 0167-9473, 1872-7352
    Veröffentlicht: Elsevier B.V 01.06.2024
    Veröffentlicht in Computational statistics & data analysis (01.06.2024)
    “… To facilitate large-scale training of DPAM using backfitting or block minimization, two suitable primal-dual algorithms are developed, including both batch and stochastic versions, for updating each …”
    Volltext
    Journal Article
  17. 17

    Approximate Bayesian model inversion for PDEs with heterogeneous and state-dependent coefficients von Barajas-Solano, D.A., Tartakovsky, A.M.

    ISSN: 0021-9991, 1090-2716
    Veröffentlicht: Cambridge Elsevier Inc 15.10.2019
    Veröffentlicht in Journal of computational physics (15.10.2019)
    “… We present two approximate Bayesian inference methods for parameter estimation in partial differential equation (PDE) models with space-dependent and …”
    Volltext
    Journal Article
  18. 18

    Learning Deep Generative Models With Doubly Stochastic Gradient MCMC von Du, Chao, Zhu, Jun, Zhang, Bo

    ISSN: 2162-237X, 2162-2388, 2162-2388
    Veröffentlicht: United States IEEE 01.07.2018
    “… We present doubly stochastic gradient MCMC, a simple and generic method for (approximate) Bayesian inference of DGMs in a collapsed continuous parameter space …”
    Volltext
    Journal Article
  19. 19

    High-Dimensional Nonconvex Stochastic Optimization by Doubly Stochastic Successive Convex Approximation von Mokhtari, Aryan, Koppel, Alec

    ISSN: 1053-587X, 1941-0476
    Veröffentlicht: New York IEEE 2020
    Veröffentlicht in IEEE transactions on signal processing (2020)
    “… We propose a Doubly Stochastic Successive Convex approximation scheme (DSSC) able to handle non-convex regularized expected risk minimization …”
    Volltext
    Journal Article
  20. 20

    On the Use of the Doubly Stochastic Matrix Models for the Quadratic Assignment Problem von Santucci, Valentino, Ceberio, Josu

    ISSN: 1530-9304, 1530-9304
    Veröffentlicht: United States 02.09.2025
    Veröffentlicht in Evolutionary computation (02.09.2025)
    “… In this paper, we consider the Quadratic Assignment Problem (QAP) as a case study, and propose using Doubly Stochastic Matrices (DSMs …”
    Weitere Angaben
    Journal Article