Suchergebnisse - Denoising sequence autoencoder

  1. 1

    Foreground detection by probabilistic modeling of the features discovered by stacked denoising autoencoders in noisy video sequences von García-González, Jorge, Ortiz-de-Lazcano-Lobato, Juan M., Luque-Baena, Rafael M., Molina-Cabello, Miguel A., López-Rubio, Ezequiel

    ISSN: 0167-8655, 1872-7344
    Veröffentlicht: Elsevier B.V 01.07.2019
    Veröffentlicht in Pattern recognition letters (01.07.2019)
    “… •Stacked Denoising Autoencoders are used to filter noise in video sequences.•The scene background is modeled by a probabilistic mixture of Gaussians of the features discovered by SDA …”
    Volltext
    Journal Article
  2. 2

    Transfer learning and subword sampling for asymmetric-resource one-to-many neural translation von Grönroos, Stig-Arne, Virpioja, Sami, Kurimo, Mikko

    ISSN: 0922-6567, 1573-0573
    Veröffentlicht: Dordrecht Springer Netherlands 01.12.2020
    Veröffentlicht in Machine translation (01.12.2020)
    “… There are several approaches for improving neural machine translation for low-resource languages: monolingual data can be exploited via pretraining or data …”
    Volltext
    Journal Article
  3. 3

    Deinterleaving of Pulse Streams With Denoising Autoencoders von Li, Xueqiong, Liu, Zhangmeng, Huang, Zhitao

    ISSN: 0018-9251, 1557-9603
    Veröffentlicht: New York IEEE 01.12.2020
    “… ; their performance degrades in noisy environments. A novel approach based on denoising autoencoders for TOA deinterleaving was developed in this article …”
    Volltext
    Journal Article
  4. 4

    Accelerating Bayesian Optimization for Biological Sequence Design with Denoising Autoencoders von Stanton, Samuel, Maddox, Wesley, Gruver, Nate, Maffettone, Phillip, Delaney, Emily, Greenside, Peyton, Andrew Gordon Wilson

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 12.07.2022
    Veröffentlicht in arXiv.org (12.07.2022)
    “… We develop a new approach (LaMBO) which jointly trains a denoising autoencoder with a discriminative multi-task Gaussian process head, allowing gradient-based …”
    Volltext
    Paper
  5. 5

    PRPI-SC: an ensemble deep learning model for predicting plant lncRNA-protein interactions von Zhou, Haoran, Wekesa, Jael Sanyanda, Luan, Yushi, Meng, Jun

    ISSN: 1471-2105, 1471-2105
    Veröffentlicht: London BioMed Central 24.08.2021
    Veröffentlicht in BMC bioinformatics (24.08.2021)
    “… Results In this study, we propose an ensemble deep learning model to predict plant lncRNA-protein interactions using stacked denoising autoencoder and convolutional neural network based on sequence …”
    Volltext
    Journal Article
  6. 6

    Grammatical Error Correction with Denoising Autoencoder von Pajak, Krzysztof, Gonczarek, Adam

    ISSN: 2158-107X, 2156-5570
    Veröffentlicht: West Yorkshire Science and Information (SAI) Organization Limited 2021
    “… A denoising autoencoder sequence-to-sequence model based on transformer architecture proved to be useful for underlying tasks such as summarization, machine translation, or question answering …”
    Volltext
    Journal Article
  7. 7

    Reconstruction of Power System Measurements Based on Enhanced Denoising Autoencoder von Lin, You, Wang, Jianhui, Cui, Mingjian

    ISSN: 1944-9933
    Veröffentlicht: IEEE 01.08.2019
    Veröffentlicht in IEEE Power & Energy Society General Meeting (01.08.2019)
    “… An Enhanced Denoising Autoencoder (EDAE) is proposed to reconstruct the missing data through the input vector space reconstruction based on the neighbor values correlation and Long Short-Term Memory (LSTM) networks …”
    Volltext
    Tagungsbericht
  8. 8

    Deep Learning for Accurate Indoor Human Tracking with a mm-Wave Radar von Pegoraro, Jacopo, Solimini, Domenico, Matteo, Federico, Bashirov, Enver, Meneghello, Francesca, Rossi, Michele

    ISSN: 2375-5318
    Veröffentlicht: IEEE 21.09.2020
    “… In this work, we propose an original model-free tracking procedure based on denoising autoencoders and sequence-to-sequence neural networks, showing its superior performance with respect to state-of-the-art methods …”
    Volltext
    Tagungsbericht
  9. 9

    Signal Separation Method for Radiation Sources Based on a Parallel Denoising Autoencoder von Tang, Xusheng, Wei, Mingfeng

    ISSN: 2079-9292, 2079-9292
    Veröffentlicht: Basel MDPI AG 01.03.2024
    Veröffentlicht in Electronics (Basel) (01.03.2024)
    “… This method implements the binarized preprocessing of known time-of-arrival (TOA) sequences and then constructs multiple parallel denoising autoencoder models using fully …”
    Volltext
    Journal Article
  10. 10

    An Approach for Predicting Protein-Protein Interactions using Supervised Autoencoders von Albu, Alexandra-Ioana

    ISSN: 1877-0509, 1877-0509
    Veröffentlicht: Elsevier B.V 2022
    Veröffentlicht in Procedia computer science (2022)
    “… In this paper, we introduce a two-stage sequence-based PPI prediction method based on supervised autoencoders …”
    Volltext
    Journal Article
  11. 11

    Denoising of Radar Pulse Streams With Autoencoders von Li, Xueqiong, Liu, Zhang-Meng, Huang, Zhitao

    ISSN: 1089-7798, 1558-2558
    Veröffentlicht: New York IEEE 01.04.2020
    Veröffentlicht in IEEE communications letters (01.04.2020)
    “… ) sequences using the autoencoders. The noise-contaminated TOA sequence is first coded into a binary vector and then fed into an autoencoder for training …”
    Volltext
    Journal Article
  12. 12

    Improving Machine Translation Quality with Denoising Autoencoder and Pre-Ordering von Hong-Viet, Tran, Van-Vinh, Nguyen, Hoang-Quan, Nguyen

    ISSN: 1330-1136, 1846-3908
    Veröffentlicht: Sveuciliste U Zagrebu 01.03.2021
    Veröffentlicht in Journal of computing and information technology (01.03.2021)
    “… The problems in machine translation are related to the characteristics of a family of languages, especially syntactic divergences between languages. In the …”
    Volltext
    Journal Article Paper
  13. 13

    A transformer model blended with CNN and denoising autoencoder for inter-patient ECG arrhythmia classification von Xia, Yong, Xiong, Yueqi, Wang, Kuanquan

    ISSN: 1746-8094, 1746-8108
    Veröffentlicht: Elsevier Ltd 01.09.2023
    Veröffentlicht in Biomedical signal processing and control (01.09.2023)
    “… Heartbeats can enhance their feature representation by attending to adjacent heartbeats.•We provide a denoising autoencoder with multiple regularizations for local …”
    Volltext
    Journal Article
  14. 14

    Single-cell RNA-seq denoising using a deep count autoencoder von Eraslan, Gökcen, Simon, Lukas M., Mircea, Maria, Mueller, Nikola S., Theis, Fabian J.

    ISSN: 2041-1723, 2041-1723
    Veröffentlicht: London Nature Publishing Group UK 23.01.2019
    Veröffentlicht in Nature communications (23.01.2019)
    “… However, noise due to amplification and dropout may obstruct analyses, so scalable denoising methods for increasingly large but sparse scRNA-seq data are needed …”
    Volltext
    Journal Article
  15. 15

    Predicting protein–protein interactions in microbes associated with cardiovascular diseases using deep denoising autoencoders and evolutionary information von Zhou, Senyu, Luo, Jian, Tang, Mei, Li, Chaojun, Li, Yang, He, Wenhua

    ISSN: 1663-9812, 1663-9812
    Veröffentlicht: Switzerland Frontiers Media S.A 11.03.2025
    Veröffentlicht in Frontiers in pharmacology (11.03.2025)
    “… ), which leverages the denoising autoencoder and the CatBoost algorithm to predict PPIs from the evolutionary information of protein sequences …”
    Volltext
    Journal Article
  16. 16

    Short-Term Wind-Speed Forecasting Based on Multiscale Mathematical Morphological Decomposition, K-Means Clustering, and Stacked Denoising Autoencoders von Dong, Weichao, Sun, Hexu, Li, Zheng, Zhang, Jingxuan, Yang, Huifang

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: Piscataway IEEE 01.01.2020
    Veröffentlicht in IEEE access (01.01.2020)
    “… ), K-means clustering algorithm, and stacked denoising autoencoder (SDAE) networks. First, in contrast to traditional signal-decomposing tools, the original wind …”
    Volltext
    Journal Article
  17. 17

    Aircraft engines Remaining Useful Life prediction with an adaptive denoising online sequential Extreme Learning Machine von Berghout, Tarek, Mouss, Leïla-Hayet, Kadri, Ouahab, Saïdi, Lotfi, Benbouzid, Mohamed

    ISSN: 0952-1976
    Veröffentlicht: Elsevier Ltd 01.11.2020
    Veröffentlicht in Engineering applications of artificial intelligence (01.11.2020)
    “… In this paper, a new Denoising Online Sequential Extreme Learning Machine (DOS-ELM) with double dynamic forgetting factors (DDFF …”
    Volltext
    Journal Article
  18. 18
  19. 19

    miTarDigger: A Fusion Deep-learning Approach for Predicting Human miRNA Targets von Yan, Jianrong, Li, Yanan, Zhu, Min

    Veröffentlicht: IEEE 16.12.2020
    “… s. In this study, a deep learning approach based on fusion of stacked denoising autoencoders (SDA) and Convolutional denoising autoencoders …”
    Volltext
    Tagungsbericht
  20. 20

    A short‐term wind power prediction method based on deep learning and multistage ensemble algorithm von Peng, Xiaosheng, Li, Cong, Jia, Shiyuan, Zhou, Liangsong, Wang, Bo, Che, Jianfeng

    ISSN: 1095-4244, 1099-1824
    Veröffentlicht: Bognor Regis John Wiley & Sons, Inc 01.09.2022
    Veröffentlicht in Wind energy (Chichester, England) (01.09.2022)
    “… In the second stage, based on the decomposition sequences, the stacked denoising autoencoder (SDAE), long short‐term memory (LSTM), and bidirectional long short …”
    Volltext
    Journal Article